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PREFACE

This book is designed in the light of the new guidelines and syllabi —
2003 for the Higher Secondary Mathematics, prescribed for the Second Year,
by the Government of Tamil Nadu.

The 21% century is an era of Globalisation, and technology occupies the
prime position. In this context, writing a text book on Mathematics assumes
special significance because of its importance and relevance to Science and
Technology.

As such this book is written in tune with the existing international
standard and in order to achieve this, the team has exhaustively examined
internationally accepted text books which are at present followed in the reputed
institutions of academic excellence and hence can be relevant to secondary
level students in and around the country.

This text book is presented in two volumes to facilitate the students for
easy approach. Volume | consists of Applications of Matrices and
Determinants, Vector Algebra, Complex numbers and Analytical Geometry
which is dealt with a novel approach. Solving a system of linear equations and
the concept of skew lines are new ventures. Volume Il includes Differential
Calculus — Applications, Integral Calculus and its Applications, Differential
Equations, Discrete Mathematics (a new venture) and Probability Distributions.

The chapters dealt with provide a clear understanding, emphasizes an
investigative and exploratory approach to teaching and the students to explore
and understand for themselves the basic concepts introduced.

Wherever necessary theory is presented precisely in a style tailored to
act as a tool for teachers and students.

Applications play a central role and are woven into the development of
the subject matter. Practical problems are investigated to act as a catalyst to
motivate, to maintain interest and as a basis for developing definitions and

procedures.



The solved problems have been very carefully selected to bridge the gap
between the exposition in the chapter and the regular exercise set. By doing
these exercises and checking the complete solutions provided, students will be
able to test or check their comprehension of the material.

Fully in accordance with the current goals in teaching and learning
Mathematics, every section in the text book includes worked out and exercise
(assignment) problems that encourage geometrical visualisation, investigation,
critical thinking, assimilation, writing and verbalization.

We are fully convinced that the exercises give a chance for the students
to strengthen various concepts introduced and the theory explained enabling
them to think creatively, analyse effectively so that they can face any situation
with conviction and courage. In this respect the exercise problems are meant
only to students and we hope that this will be an effective tool to develop their
talents for greater achievements. Such an effort need to be appreciated by the
parents and the well-wishers for the larger interest of the students.

Learned suggestions and constructive criticisms for effective refinement

of the book will be appreciated.

K.SRINIVASAN
Chairperson
Writing Team.
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SYLLABUS

APPLICATIONS OF MATRICES AND DETERMINANTS : Adjoint, Inverse —
Properties, Computation of inverses, solution of system of linear equations by
matrix inversion method. Rank of a Matrix — Elementary transformation on a
matrix, consistency of a system of linear equations, Cramer's rule,

Non-homogeneous equations, homogeneous linear system, rank method.
(20 periods)

VECTOR ALGEBRA : Scalar Product — Angle between two vectors, properties
of scalar product, applications of dot products. Vector Product — Right handed
and left handed systems, properties of vector product, applications of cross
product. Product of three vectors — Scalar triple product, properties of scalar
triple product, vector triple product, vector product of four vectors, scalar product
of four vectors. Lines — Equation of a straight line passing through a given point
and parallel to a given vector, passing through two given points (derivations are
not required). angle between two lines. Skew lines — Shortest distance between
two lines, condition for two lines to intersect, point of intersection, collinearity of
three points. Planes — Equation of a plane (derivations are not required), passing
through a given point and perpendicular to a vector, given the distance from the
origin and unit normal, passing through a given point and parallel to two given
vectors, passing through two given points and parallel to a given vector, passing
through three given non-collinear points, passing through the line of intersection
of two given planes, the distance between a point and a plane, the plane which
contains two given lines, angle between two given planes, angle between a line
and a plane. Sphere — Equation of the sphere (derivations are not required)
whose centre and radius are given, equation of a sphere when the extremities of the

diameter are given. (28 periods)



(3) COMPLEX NUMBERS : Complex number system, Conjugate — properties,
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ordered pair representation. Modulus — properties, geometrical representation,
meaning, polar form, principal value, conjugate, sum, difference, product,
guotient, vector interpretation, solutions of polynomial equations, De Moivre’s
theorem and its applications. Roots of a complex number — nth roots, cube

roots, fourth roots. (20 periods)

ANALYTICAL GEOMETRY : Definition of a Conic — General equation of a
conic, classification with respect to the general equation of a conic, classification
of conics with respect to eccentricity. Parabola — Standard equation of a parabola
(derivation and tracing the parabola are not required), other standard parabolas,
the process of shifting the origin, general form of the standard equation, some
practical problems. Ellipse — Standard equation of the ellipse (derivation and
tracing the ellipse are not required), x2/a2 + y2/b2 =1, (a > b), Other standard
form of the ellipse, general forms, some practical problems, Hyperbola —
standard equation (derivation and tracing the hyperbola are not required), x2/a2 -
y2/b2:1, Other form of the hyperbola, parametric form of conics, chords.
Tangents and Normals — Cartesian form and Parametric form, equation of

chord of contact of tangents from a point (x1, y1), Asymptotes, Rectangular

hyperbola — standard equation of a rectangular hyperbola.
(30 periods)

DIFFERENTIAL CALCULUS — APPLICATIONS | : Derivative as a rate
measure — rate of change — velocity — acceleration — related rates — Derivative as
a measure of slope — tangent, normal and angle between curves. Maxima and
Minima. Mean value theorem - Rolle’s Theorem — Lagrange Mean Value
Thorem — Taylor's and Maclaurin’s series, |' Hopital's Rule, stationary points —

increasing, decreasing, maxima, minima, concavity convexity, points of inflexion.

(28 periods)
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DIFFERENTIAL CALCULUS — APPLICATIONS Il : Errors and approximations
— absolute, relative, percentage errors, curve tracing, partial derivatives — Euler’s

theorem. (10 periods)

INTEGRAL CALCULUS AND ITS APPLICATIONS : Properties of definite
integrals, reduction formulae for sin"x and cos"x (only results), Area, length,

volume and surface area (22 periods)

DIFFERENTIAL EQUATIONS : Formation of differential equations, order and
degree, solving differential equations (1% order) - variable separable
homogeneous, linear equations. Second order linear equations with constant co-

mx

efficients f(x) = e, sin mx, cos mx, X, x2. (18 periods)

DISCRETE MATHEMATICS : Mathematical Logic - Logical statements,

connectives, truth tables, Tautologies.

GROUPS : Binary Operations — Semi groups — monoids, groups (Problems and

simple properties only), order of a group, order of an element. (18 periods)

PROBABILITY DISTRIBUTIONS : Random Variable, Probability density function,
distribution function, mathematical expectation, variance, Discrete Distributions —

Binomial, Poisson, Continuous Distribution — Normal distribution
(16 periods)

Total : 210 Periods
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5. DIFFERENTIAL CALCULUS
APPLICATIONS- |

5.1 Introduction :

In higher secondary first year we discussed the theoretical aspects of
differential calculus, assimilated the process of various technigques involved and
created many tools of differentiation. Geometrical and kinematical significances
for first and second order derivatives were aso interpreted. Now let us learn
some practical aspects of differential calculus.

At this level we shall consider problems concerned with the applications to
(i) plane geometry, (ii) theory of real functions, (iii) optimisation problems and
approximation problems.
5.2 Derivativeasarate measure:

If a quantity y depends on and varies with a quantity x then the rate of

change of y with respect to x is% .

Thus for example, the rate of change of pressure p with respect to height
h is% . A rate of change with respect to time is usualy called as ‘the rate of
change’, the ‘with respect to time’ being assumed. Thus for example, a rate of
change of current ‘i’ is% and a rate of change of temperature ‘6’ is% and so
on.

Example 5.1 : The length | metres of a certain metal rod at temperature 6°C is

given by | = 1 + 0.000056 + 0.00000046°. Determine the rate of change of
length in mm/°C when the temperatureis (i) 100°C and (ii) 400°C.

Solution : Therate of change of length means da

do-
Sincelength | = 1+ 0.000050 + 0.000000462,
% = 0.00005 + 0.00000080 .
(i) when 6 = 100°C
% = 0.00005 + (0.0000008) (100)

= 0.00013 m/°C =0.13 mm/°C



(ii) when © = 400°C

% = 0.00005 + (0.0000008) (400)

= 0.00037 m/°C =0.37 mm/°C
Example 5.2 : The luminous intensity | candelas of a lamp at varying voltage

Visgiven by : | = 4 x 1042, Determine the voltage at which the light is
increasing at arate of 0.6 candelas per volt.

Solution : Therate of change of light with respect to voltage is given by g—\l/ .

Sincel = 4 x 10742

dl _
d_V:8><10 4.

When the light isincreasing at 0.6 candelas per volt then g—\l/ =+ 0.6. Therefore
we must have + 0.6 =8 x 104V, from which,

VoltageV = 0.6 — =0.075x 10* =750 Volts.
8x 10

Veocity and Acceleration :

P <

A car describes a distance x
metres in time t seconds along a
straight road. If the velocity v is

Distance

X .
constant, then v = T m/s i.e., the t

slope (gradient) of the distance/time
graph shown in Fig.5.1 is constant.

If, however, the velocity of the
car is not constant then the distance /
time graph will not be a straight line.
It may be asshownin Fig.5.2

The average velocity over a
smal time At and distance AXx is A
given by the gradient of the chord AB Ar > x
i.e., the average velocity over time At Time
L AX
ISAt Fig. 5.2

P <

Distance




As At — 0, the chord AB becomes a tangent, such that at point A the
L dx . . .
velocity is given by v = ot - Hence the velocity of the car at any instant is

given by gradient of the distance / time graph. If an expression for the distance x
is known in terms of time, then the velocity is obtained by differentiating the
expression.

The acceleration ‘a’ of the car is
defined as the rate of change of
velocity. A velocity / time graph is
shown in Fig.5.3. If Av isthe change
in v and At is the corresponding

P <

Velocity

Ay
. A
change in time, then a = X\t/ As Az
» X
At — 0 the chord CD becomes a Time
tangent such that at the point C, Fig.5.3

the accelerationisgiven by a= %’

Hence the acceleration of the car at any instant is given by the gradient of
the velocity / time graph. If an expression for velocity is known in terms of time
t, then the acceleration is obtained by differentiating the expression.

Acceleration a = %’ Wherev:%
’ S NCIE o’
enee a=dr \dt )~ g
The acceleration is given by the second differential coefficient of distance
X with respect to time t. The above discussion can be summarised as follows. If
abody moves adistance x metersin timet seconds then
(i) distance x=f(t).
(ii) velocity v=1'(t) or % , which isthe gradient of the

distance/ time graph.
2

(iii) Acceleration a:%/ =f"(t) or (;T;(,Whichisthegradient of the

velocity / time graph.
Note: (i) Initial velocity meansvelocity att=0
(i) Initial acceleration means acceleration at t = 0.
(iii) If the motion is upward, at the maximum height, the velocity is zero.
(iv) If the motion is horizontal, v = 0 when the particle comes to rest.



Example 5.3 : The distance x metres described by a car in time t seconds is
given by: x = 33— 2t + 4t — 1. Determine the velocity and acceleration when
()t =0 and (ii))t=15s

Solution : distance x = 3t> — 2% +4t -1

velocity v:%( = o —4t +4 mis

. d?x
acceleration a = ? = 18t — 4 mM/$2

0 Whentimet =0
velocity v = 9(0)% — 4(0) +4 = 4ns
and acceleration a=18(0) — 4 = -4 ms?
(i) when time t = 1.5 sec
velocity v = 9(1.5)% — 4(15) +4 = 18.25 m/sec
and acceleration a = 18(1.5) — 4 = 23 m/sec’
Example 5.4 : Supplies are dropped from an helicopter and distance fallen in

2

timet seconds is given by x = %gt2 where g = 9.8 n/sec”. Determine the

velocity and acceleration of the supplies after it has fallen for 2 seconds.

Solution : distance x = :—ZLgt2 = % (9.8) t? = 49tm

velocity v = % = 9.8t m/sec
2
acceleration a = % = 9.8 m/sec?

Whentime t = 2 seconds
velocity v = (9.8)(2) = 19.6 mysec
and acceleration a = 9.8 mvsec® which is the acceleration due to
gravity.
Example 5.5 : The angular displacement 6 radians of afly wheel varieswith
time t seconds and follows the equation 6 = ot’ — 2t°. Determine
(i) the angular velocity and acceleration of the fly wheel when time
t=1 second and
(ii) thetimewhen the angular acceleration is zero.

Solution: (i)  angular displacement 6 = ot? - 2t3 radians.

angular velocity o = % = 18t - 6t° rad/s



Whentime t =1 second,

o = 18(1) - 6(1)° = 12rad/s
__d%
angular acceleration = F =18 - 12t rad/s

whent =1, angular acceleration = 6 rad/ 2
(if) Angular accelerationiszero = 18 —12t = 0, from whicht=15s
Example 5.6 : A boy, who is standing on a pole of height 14.7 m throws a stone
vertically upwards. It moves in a vertical line dightly away from the pole and
falls on the ground. Its equation of motion in meters and seconds is
x=098t- 49t (i) Find the time taken for upward and downward motions.
(i) Also find the maximum height reached by the stone from the ground.
Solution :
() x=9.8t-49¢t
At the maximum height v=10 , 11— Max. Ht.
v=%=9.8—9.8t g =0« _J
v=0 = t=1sec
. The time taken for upward
motion is 1 sec. For each position x, s =-147
there corresponds a time ‘t'. The
ground position is x = — 14.7, since .
the top of the poleistaken asx = 0. Fig. 5.4
To get the total time, put x = — 14.7 in the given equation.

ie,—147=98t-49° = t=-1,3
= t=-1isnot admissibleand hencet =3
The time taken for downward motionis3 — 1 = 2 secs
(i) Whent =1, the position x=9.8(1) - 4.9(1) =4.9m
The maximum height reached by the stone = pole height + 4.9 =19.6 m

5.3 Related Rates:

In the related rates problem the ideais to compute the rate of change of one
guantity in terms of the rate of change of another quantity. The procedure is to
find an equation that relates the two quantities and then use the chain rule to
differentiate both sides with respect to time.

We suggest the following problem solving principles that may be followed
as a strategy to solve problems considered in this section.

Ground




(1) Read the problem carefully.

(2) Draw adiagram if possible.

(3) Introduce notation. Assign symbols to all quantities that are functions
of time.

(4) Express the given information and the required rate in terms of
derivatives.

(5) Write an equation that relates the various quantities of the problem. If
necessary, use the geometry of the situation to eliminate one of the
variables by substitution.

(6) Use the chain rule to differentiate both sides of the equation with
respect to t.

(7) Substitute the given information into the resulting equation and solve
for the unknown rate.

[llustration : Air is being pumped into a spherical balloon so that its volume
increases at arate of 100 cm>/s. How fast is the radius of the balloon increasi ng
when the diameter is 50 cm.

Solution :

We start by identifying two things.

(i) The given information : The rate of increase of the volume of air is
100 cm/s. and

(ii) The unknown : The rate of increase of the radius when the diameter is
50 cm.

In order to express these quantities mathematically we introduce some

suggestive notation.

Let V be the volume of the balloon and let r beits radius.

The key thing to remember is that the rates of change are derivatives. In

this problem, the volume and the radius are both functions of time t. The rate of

. . L . .oadv
increase of the volume with respect to time is the derivative 3 and the rate of

. . dr .
increase of the radiusis'y; . We can therefore restate the given and the unknown
asfollows:

. \/
Given: %t =100 cm®/s and unknown : % whenr = 25cm.

In order to connect (21_\t/ and % we first relate V and r by the formula for

the volume of a sphere V = g ars,



In order to use the given information, we differentiate both sides of this
equation with respect to t. To differentiate the right side, we need to use chain
ruleasVisafunction of r and r isafunction of t.

dav_dv dr _ 4, odr 2dr

i.e., dt ~dr-dt — 3 3mr dt:41'cl’ dt

. ar 1 dadv
Now we solve for the unknown quantity 5 = ﬁ dt
TC

If weputr =25 and((jj—\t/= 100 in this equation,

dr  1x100 1
~ 251

i.e., the radius of the balloon isincreasing at the rate of 2_;1 cnvs.

Example 5.7 : A ladder 10 m long rests against a vertical wall. If the bottom of
the ladder dlides away from the wall at a rate of 1 m/sec how fast is the top of
the ladder diding down the wall when the bottom of the ladder is 6 m from the
wall ?

Solution : We first draw a diagram y
and lableit asin Fig. 5.5 _4
Let x metres be the distance S

from the bottom of the ladder to the

wall and y metres be the vertical TN\ 10

distance from the top of the ladder to Y3

the ground. Note that x and y are both = dx/de =1
funct(ij?(ns of time't’. We are given x Ground
thataz 1 m/sec and we are asked

tofind%¥whenx: 6m. Fig.5.5

In this question, the relationship between x and y is given by the
Pythagoras theorem : X2+ y2 =100
Differentiating each side with respect to t, using chain rule, we have

ax o dy
X+ dr =
and solving this equation for the derived rate we obtain,
dy _ x dx
da ~ Ty dt



When x = 6, the Pythagoras theorem gives, y = 8 and so substituting these
dx d 6 -3
valuesand G =1, we get EI% =-3 (1) =7 misec.

The ladder is moving downward at the rate of % nmv/sec.

Example 5.8 : A car A is travelling from west at 50 km/hr. and car B is
travelling towards north at 60 km/hr. Both are headed for the intersection of the
two roads. At what rate are the cars approaching each other when car A is 0.3
kilometers and car B is 0.4 kilometers from the intersection?

Solution :

We draw Fig. 5.6 where C is the
intersection of the two roads. At a given
timet, let x be the distance from car Ato C, \ y
let y be the distance from car B to C and let
z be the distance between the cars A and B
where x, y and z are measured in kilometers. B

A X C

Fig. 5.6
We are given that% = — 50 km/hr and %% =— 60 km/hr.

Note that x and y are decreasing and hence the negative sign. We are asked
to find g—f The equation that relate x, y and z is given by the Pythagoras

theoremzZ:x2+y2

Differentiating each side with respect tot,

d_ ok, dy  dz_1( dx _dy
wehave 2z ‘g =2X G +2y Gt = G = z(x dt+ydt)

When x=0.3andy = 0.4 km, we get z=0.5 km and we get

g—f = ofl5 [0.3 (— 50) + 0.4 (—60)] = —78 km/hr.

i.e., the cars are approaching each other at arate of 78 km/hr.

Example 5.9 : A water tank has the shape of an inverted circular cone with base
radius 2 metres and height 4 metres. If water is being pumped into the tank at a
rate of 2m>/min, find the rate at which the water level is rising when the water
is3m deep.



Solution :

We first sketch the cone
and label it asin Fig. 5.7. Let V, r
and h be respectively the volume of X ., 4m
the water, the radius of the cone //
and the height at time t, where
t is measured in minutes.

7,

Fig. 5.7
. dv 3, . . dh .
We are given thata = 2m>/min. and we are asked to fmdawhen his3m.

The quantities VV and h are related by the equation V = :—é nr?h. Butitis very
useful to express V as function of h aone.

AN

In order to eliminate r we use similar triangles in Fig. 5.7 to write}; =

=>r =g and the expression foerecomesV=% n@)zh: %hg

Now we can differentiate each side with respect to t and we have

& _m.pdh _ dh_ 4 dv
d =4 dt T dt T2 dt
- dv 3, .
Substituting h = 3mand " = 2m/min.
dh 4 8 .
we get, ¢ =W.2=§ m/min
EXERCISE 5.1

(1) A missile fired from ground level rises x metres vertically upwards in
t seconds and x = 100t - 2—25 t2. Find (i) theinitial velocity of the missile,

(ii) the time when the height of the missile is a maximum (iii) the
maximum height reached and (iv) the velocity with which the missile
strikes the ground.

(2) A particle of unit mass moves so that displacement after t secsis given by
x =3 cos (2t —4). Find the acceleration and kinetic energy at the end of 2

SEcs. [K.E. =%mv2, mismass}

(3) The distance x metres traveled by a vehicle in time t seconds after the
brakes are applied isgivenby : x =20t - 5/3t°. Determine (i) the speed
of the vehicle (in km/hr) at the instant the brakes are applied and (ii) the
distance the car travelled before it stops.



(4)

©®)

(6)

()

®)

9)

Newton’'s law of cooling is given by 6 = 900 e’kt, where the excess of
temperature at zero time is GOOC and at time t seconds is 6°C. Determine
the rate of change of temperature after 40 s, given that 6, = 16" C and
k=-0.03. [e'? = 3.3201)
The dltitude of atriangleisincreasing at arate of 1 cm/min while the area
of the triangle is increasing at a rate of 2 cm?/min. At what rate is the

base of the triangle changing when the atitude is 10 cm and the areais
100 cm?.

At noon, ship A is 100 km west of ship B. Ship A is sailing east at 35
km/hr and ship B is sailing north at 25 km/hr. How fast is the distance
between the ships changing at 4.00 p.m.

Two sides of atriangle are 4m and 5m in length and the angle between
them is increasing at a rate of 0.06 rad/sec. Find the rate at which the
area of the triangle is increasing when the angle between the sides of
fixed length is /3.

Two sides of a triangle have length 12 m and 15 m. The angle between
them isincreasing at arate of 2° /min. How fast is the length of third side
increasing when the angle between the sides of fixed length is 60°?

Gravel is being dumped from a conveyor belt at a rate of 30 ft3/min and
its coarsened such that it forms a pile in the shape of a cone whose base
diameter and height are always equal. How fast is the height of the pile
increasing when the pileis 10 ft high ?

5.4 Tangents and Normals (Derivative as a measur e of slope)

In this section the applications ‘y
of derivatives to plane geometry is
discussed. For this, let us consider a
curve whose equation isy = f(x).

On this curve take a point
P(x1,y7). Assuming that the tangent
at this point is not parallel to the co-
ordinate axes, we can write the
equation of the tangent line at P.

10



The equation of a straight line with slope (gradient) m passing through
(X1,yq) isof theformy —y; = m(x—Xx,). For the tangent line we know the slope

m=1£'(x) = (%) at (X1,y1) and so the equation of the tangent is of the form

y —yp=f'(X7) (X—X4). If m=0, the curve has a horizontal tangent with equation

y =Yy a P(xq,yq). If f(X) is continuous at x = X4, but L f'(X) =0 = the

i
X —> X
curve has a vertical tangent with equation X = X;.

In addition to the tangent to a curve at a given point, one often has to
consider the normal which is defined asfollows :
Definition : The normal to a curve at a given point is a straight line passing
through the given point, perpendicular to the tangent at this point.

From the definition of a normal it is clear that the slope of the normal n'

and that of the tangent m are connected by the equation m' = —Rl] .

3 1 _ -1
) (%%) (x1.y1)

Hence the equation of anormal to acurvey = f(x) at apoint P(xq,yq) is

/ j—

i.e, m

of theform y —y;=— ﬁ (X=Xy).

The equation of the normal at (x;,y;) is
(i) x = x4 if the tangent is horizontal (ii) y =y, if the tangent is vertical and

@iii) y=yq = _—n%(x —Xq) otherwise.
Example 5.10: Find the equations of the tangent and normal to the curvey = X3
at the point (1,1).
Solution : We havey = X slopey'= 3.

At the point (1,1), x=1 and m=3(1)* = 3.

Therefore equation of the tangent is y — y; = m(X — X;)

y—1= 3(x—1)or y=3x-2

The equation of the normal isy —y; = - % (x=xp)

-1 1 4
y —1=§(x—1) or y=—3 x+3
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Example 5.11 : Find the equations of the tangent and norma to the curve
y=x2— X —2 at the point (1,— 2).

Solution : We havey = X X2 ; slope, ng =2x-1

Atthepoint (1,-2), m=1
Hence the equation of thetangentisy —y; = m(x—x;) i.e, y—(-2) =x-1
ie, y=x-3

Equation of thenormal is y-y; = __rr% (x—x%9)

i.e, y—-(=2 =_—ll x-1)

or y=-x-1

Example 5.12 : Find the equation of the tangent at the point (a,b) to the

curveXxy = CZ.

Solution : The equation of the curveisxy = .

Differentiating w.r.to x we get,

dy _
YHtX gx = 0
dy _ -y _ (Y _b
Ordx‘xandm‘(dx) “a -
(a.b)
Hence the required equation of the tangent is
b
y-b=7 (x-a)

i.e,ay—ab =—bx+ab

bx +ay = 2ab or§+% =2

Example 5.13 : Find the equations of the tangent and normal at 6 = % to the
curve X =a(@+sn0), y = a(l+cosb).

Solution : We have L = a (1 + cosb) :ZaCOSZ%

do
dy _ o .0 0
a0 ——asme——2a5|n2c052
dy
dy _d6 _ 0
Thendx—% = —tan3

do

12



. Slope m= (gy —tan; = -1

X)e:T[/Z_

ENE

Also for 0 :%, the point on the curveis(a %+ a, a).

Hence the equation of the tangent at 6 :% is

y—a= (-1) [x—a(g+ 1)}

. 1 1
e, x+ty =35 an+2a or x+y — 5an —-2a=0

Equation of the normal at this point is

y—a= (1) [x—a(%+ 1)}

or X —y — % armr =0
Example 5.14 : Find the equations of tangent and norma to the curve
1652 + 9y2 =144 at (X1,y1) wherex; =2 and y, > 0.
Solution : We have 16x° + 9y° = 144
(Xq,y) liesonthiscurve, where x; =2 andy; >0
(16 x 4)+9y,°=144 or 9y,°=144-64 =80

2_80 80 _\8&

yi'=9 -~ Y1=f73 .Buty;>0 .y =773

2|

. The point of tangency is (X1.y1) = (2, 3

We have 16x2+9y2=144
dy 32 x 16 ()_y()

Differentiating w.r.to xwe get ax __Ey -3
8 d
~. Theslope at (233;) = (Eﬁ) 75
(2’ 3 )
_ % 2 _ 8
"9 7 480 "7 35
3

13
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The equation of the tangent isy — 3 ——%(X—Z)

On simplification we get 8x + 3/5y = 36
Similarly the equation of the normal can befound as9+/5x—24y + 14/5 =0
Example 5.15 : Find the equations of the tangent and normal to the ellipse

X = acosh, y = bsin6 atthepoint6 =7

Solution: At 6 = %,(xl,y1)=(a003%, bsin%) :(\/Q , \/5)

ax _y_
P —asno, a0 b cos 0. ‘y

dy
gy _d0 _b cotd \%P{ /4

= = -

N
b n_-b I

Sm==g o=y i

Thus the point of tangency is (%L) and the slopeis m= 3

( jorbx+ay am/2=0

The equation of thetangentis y——= =

b
a
The equation of the normal is y— ﬁ ( )

or (ax—by)\2 —(&®-b? =
Example 5.16 : Find the equation of the tangent to the parabola, y2 =20 X
which forms an angle 45° with the x — axis.

Solution: We hatvey2 = 20x. Let (x1,y1) bethetangentia point
Now 2yy' =20 .. y':%) ie,a (X, y;) m :% .. (D

But the tangent makes an angle 45° with the x — axis.
", dope of thetangent m=tan 45° =1 .. (2

From (1) and (2) 31/—(1) =1 =>y,=10

But (X1,y1) lieson y2 =20x = ylz =20x%;

14



100 = 20x, 0orx; =5
i.e, (Xyp) =(510)
and hence the equation of the tangent at (5, 10) is
y—10 = 1(x-5)
ory=x+5.
Note: This problem is suitable for equation of any tangent to aparabola

. a
e,y =mx+

5.5 Angle between two curves:

The angle between the curves C; and C, at a point of intersection P is
defined to be the angle between the tangent linesto C; and C, at P (if these
tangent lines exist) Let us represent the two curves C; and C, by the Cartesian
equationy = f(x) andy = g(x) respectively. Let them intersect at P (x;,y,) .

If v, and y, are the angles made by the tangents PT, and PT, to
C, and C, at P, with the positive direction of the x —axis, then m; = tan y ; and
m, = tan y, are the slopes of PT; and PT, respectively.

Let v be the angle between PT; ‘y‘ y =g (%)
and PT2 Then V=Y =Yg and y Ef x) C2
tan y = tan (v —yy)
tan yy—tany,
T l+tanyqtany,
_ Mo~y

T l+mm, 0O
where0<y<n Fig. 5.10

We observe that if their slopes are equal namely my = my, then the two
curves touch each other. If the product my m, = — 1 then these curves are said to

cut at right angles or orthogonally. We caution that if they cut at right angles
then m; my, need not be —1.

Note that in this case y, is acute and y,, is obtuse and y = y, — yq. If gy is
obtuse and vy, is acute, then y = y1—y».

15



Combining together the angle between tangents can be given as y1~y, or
m -y
1+mm,
Example 5.17 : Find the angle between the curvesy = X% and y=(X- 2)2 at the

point of intersection.
Solution : To get the point of intersection of the curves solve the equation

tan vy~ tany,
tan Y= tan(WlNWZ) = 1+ tan vy tan Vo =

weget x° = (x- 2)° 1 .
Thisgivesx=1. Whenx =1,y=1 % N
.. Thepoint of intersectionis (1, 1) >~ 2
_ dy _ 1
Now y—x2 = dx =2X
= (gﬁ) =2 0,0
(11

d d
y= (x—2)2:>&=2(x—2) :>mz=(a¥) =—
(1.1)
If v isthe angle between them, then
-2-2 -4 14
tany = -4 |7 |3 = y=tan 3

Example 5.18 : Find the condition for the curves
ax® +by? = 1, a;x® + byy?= 1 to intersect orthogonally.

Solution :
If (x1,y;) isthe point of intersection, then axl2 + by12 =1; alxl2 + blyl2 =1
2 b, —b 5 a-a ,
then, x;“ = m ,oYo= m (By Cramer’srule)
d —ax
Fralent=1 m=(8) -7
Dy N

—a1X
andfor ap@+by? = 1, =(QY) e
1 1 M = | gx Xy byy1

For orthogonal intersection, we have mym, = —1. This gives

(— axlj (— alxlj _— aalxlz _
by, bys )T ppy,?2 T

16



b;—b a-a;
aalxl +bb1yl =0 => aal ab a b bbl w =
bl b a—ap
= aa (bl - ) + bbl (a al) 0 =+ bbl + aa, =0

1 1.1 1_, 1 1
b b, Tag TaV%a "

Example 5.19 : Show thatxz—y2 = a° and Xy = ¢ cut orthogonally.
Solution : Let (x4,y1) be the point of intersection of the given curves

2% 1 which isthe required condition.

. x12—y12 = a?and X1 Y1 =¢?

d d X
Poy=a? = x-2yg =0 g =y
= gy) :ﬁ i :ﬁ
ml (dX (Xl,yl) y]_ e., ml y]_
2 2
_ 2 _c _Y_ c
W= =Y EY Ak TT R
2 2
_(dy _-C _—-C
m=(3) =55 e m=
x (X1.y1) x> X2

= the curves cut orthogonally.
Example 5.20 : Prove that the sum of the intercepts on the co-ordinate axes of

any tangent to the curve x = acose y= asm46 0<0 <5 |sequaltoa

Solution : Take any point ‘6’ as(acose asin’, )

dx o
Nowde 4acosesn6, K
and dy = 4a sin°0 cos O

do 0.2)

_dy _ s
- odx cos?0
O

17



sin%0

i.e., slopeof thetangent at ‘0’ is = —

cos’0
4 —Sin29 4
Equation of thetangent at ‘6" is(y —asin"0) = (x—acos’0)
cos’0
or xsin29+yc0329 = asin®0 cos’ 0
y
= + =
acos’d asin’0

D

@)
©)

(4)
(®)
(6)

(7)

(8)

9)
(10)

(11)

i.e., sum of theintercepts = acos? @ +asinf=a

EXERCISE 5.2
Find the equation of the tangent and normal to the curves

) y=x2—4x—5a1 Xx= —2 (i))y=x—sinXxcosx, at x=

Nla

. T . 1+sinx T
(|||)y=2$4n23x a x=g (|v)y=m ax=y,

Find the points on curve X°— y2=2 at which the slope of the tangent is 2.

Find at what points on the circle X + y2 =13, the tangent is paralel to
theline2x+3y=7

At what points on the curve X2 + y2 — 2x — 4y + 1 = 0 the tangent is
paralel to (i) x—axis (i) y—axis.

Find the equations of those tangents to the circle X2+ y2 =52, which
are pardlel to the straight line 2x + 3y = 6.

Find the equations of norma to y = x> — 3x that is paralel to
2x+18y—9=0.

Let P be apoint on the curvey = x3 and suppose that the tangent line at
P intersects the curve again at Q. Prove that the slope at Q is four times
the dlope at P.

Prove that the curve 2x° + 4y2 =1and 6x° — 12y2= 1 cut each other at
right angles.

At what angle 0 do the curves y = a*andy = b* intersect (a = b) ?
Show that the equation of the normal to the curve

X=acos’ 0 ; y= asn0a ‘o is XCcosO—ysin6 =a cos 26.
If the curvey2 =x and xy = k are orthogonal then prove that 8Kk% = 1.

18



5.6 M ean value theorems and their applications:

In this section our main objective is to prove that between any two points
of a smooth curve there is a point at which the tangent is parallel to the chord
joining two points. To do this we need the following theorem due to Michael
Rolle.

5.6.1 Rolle's Theorem : Let f be a real valued function that satisfies the
following three conditions:
(i) fisdefined and continuous on the closed interval [a, b]
(ii) fisdifferentiable on the openinterval (a, b)
(iii) f(a) =f(b)
Then there exists atleast one point ¢ € (a,b) suchthatf’(c) =0
Some observations :
¢ Rolle'stheorem is applied to the position function s = f(t) of amoving
object.
¢ |If the object is in the same place at two different instants t = a and
t = b then f(a) = f(b) satisfying hypothesis of Rolle's theorem.
Therefore the theorem says that there is some instant of timet = ¢
between a and b wheref’(c) =0i.e,, thevelocity isOatt =c.
Note that this is also true for an object thrown vertically upward
(neglecting air resistance).
¢ Rolle's Theorem applied to theory of equations : If a and b are two
roots of a polynomia equation f(x) = 0, then Rolle's Theorem says
that there is atleast one root ¢ between aand b for f’(x) = 0.
¢ Rolle's theorem implies that a smooth curve cannot intersect a
horizontal line twice without having a horizontal tangent in between.
¢ Rolle’s theorem holds trivially for the function f(x) = ¢, where cis a
constant on [a,b].
¢ The converse of Rolle's Theorem is not true ie, if a function

f satisfies f '(c) = 0 for ¢ € (a,b) then the conditions of hypothesis
need not hold.

Example 5.21 : Using Rolle's theorem find the value(s) of c.

() f=\1-x%, -1<x<1

(i) f{)=(x-a)(b-x), a<x<bh, azbh.
(i) f(x) = 23 — 5x° — 4x + 3, %s X <3
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Solution :

(i) Thefunction iscontinuousin[-1,1] and differentiable in (-1,1).
f(1) = f (1) =0 all thethree conditions are satisfied.
a1 —=2xX =X

r 2\ 12 A1-x
f'X) =0 = x=0.
(Note that for x = 0, denominator = 1 = 0) Thus the suitable point for which

Rolle s theorem holdsisc = 0.

(i) f(}X)=(x—a)(b—-x), a < x <b, azh.

f(X) iscontinuouson[a,b] andf'(x) existsat every point of (a,b).
f(a) = f(b) = 0 All the conditions are satisfied.
S =(b-x -(x-2a)

f')=0=> -2x=-b-a = x:azb

+
The suitable point ‘¢’ of Rolle's theoremisc= & ) b

1
(iii) f(x):2x3—5x2—4x+3, 5< x<3

f is continuous on E ’ 3Jand differentiablein (% > 3)
f(*2) = 0=1(3). All the conditions are satisfied.
f/(x) =6x°— 10x — 4
f/0)=0 = 3x°-5%2=0 = (3x+1) (x-2)=0 :x=—% orx=2.

x=—% doesnotliein(:—ZL, 3) . X=2isthesuitable ‘¢’ of Rolle stheorem

Remark : Rolle's theorem cannot be applied if any one of the conditions does not hold.
Example 5.22 : Verify Roll€ s theorem for the following :

() fX)=x>-3x+3 0<x<1

(i) fx)=tanx, O0<x<m

(@iii) f() =]x], -1<x<1

(iv) f(x) =sin®x, 0<x<n

(v) f(x)=€‘sinx, 0<x<n

(vi) f)=x(x-1)(x-2), 0<x<£2
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Solution :
() fX)=x>-3x+3 0<x<1
f iscontinuouson [0,1] and differentiablein (0,1)
f(0) =3 and f(1) =1 .. f (@) =T (b)
". Rolle’ stheorem, does not hold, sincef (a) = f (b) is not satisfied.
Also note that f’(x)=3x2—3=0 = x¥=1=x=11
There exists no point ¢ € (0,1) satisfying f'(c) = 0.
(i) f(x)=tanx, 0<x<m

f'(X) isnot continuousin[0,n] astan xtendsto+ o at x= g

". Rolles theorem is not applicable.
@) f) = x|, -1<x<1
f iscontinuous in [-1,1] but not differentiable in (-1,1) since f '(0) does
not exist.
*. Rollestheorem is not applicable.
(iv) f(x) =sin®x, 0<x<m
fiscontinuousin [0,x] and differentiablein (0,x). f(0) =f(x) =0
(ie.,) f satisfies hypothesis of Rolle' s theorem.
f'(X) =2sinxcosx =sin 2x

f'()=0= sin2c = 0= 2c=0,m,2r,3n,.. = ¢=0, 5, n,3—2“,

OSTES

sincec=% € (0,n), the suitable c of Rolle stheoremis c=

(V) f(x) =€'sinx, 0<x<mn
€ and sin x are continuous for all x, therefore the product € sin x is
continuousin 0 < x < .

f'(x) = €sinx + & cosx=¢€(snx+cosx) existin0<x<m
= f'(x) isdifferentiable in (0,x).
f(0) = ’sin0 =0
f(r) =€"sinn =0
. fsatisfies hypothesis of Rolle’s theorem
Thus there exists ce (0, 1) satisfying f'(c) =0 = e*(sinc+cosc) =0
=e“=0o0r sinc+cosc=0
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e“ = 0 = ¢ = — oo which is not meaningful here.

= SNC= —-C0sC= cosc = @nc =—-1 =1an 4

3n . . .
= c=7n isthe required point.

(Vi) f((X)=x(x-1) (x—-2), 0< x<2,
fiscontinuousin [0,2] and differentiablein (0,2)
f(0) =0 = f(2), satisfying hypothesis of Rolle's theorem
Now f'(X) = (x—1) (x-2) +x(x-2) +x(x-1) =0

1
= H_6x+2=0 :>x:1iq§

Therequired cin Rolle' stheoremis 1 i\% € (0,2

Note : There could exist more than one such ‘¢’ appearing in the statement of
Rolle s theorem.

Example 5.23 : Apply Roll€'s theorem to find points on curvey = — 1 + cos X,
where the tangent is paralel to x-axisin [0, 2x].

Solution :
f(x) is continuous in [0,2x] and ‘}: T o
differentiablein (0,2n) ooON > x
f(0) = 0 = f(2r) satisfying hypothesis 1
of Rolle stheorem.
Now f'(x) = —sinx=0 = snx=0 2 (n,-2)
x=0, =w 2x, ... Fig.5.13

x =z, istherequired cin (0,2r). At x=mx, y =-1+cosmt =-2.

= the point (r,—2) issuch that at this point the tangent to the curve is parallel
to x-axis.

EXERCISE 5.3
(1) Verify Rolle’'stheorem for the following functions :
(i) f(xX)= snx, 0<x<m
(i) )= %, 0<x <1
@ii)y fx)=|x-1, 0<x<2

awfm:4ﬁ—w,—gsxsg

22



(2) Using Ralle's theorem find the points on the curve y = X+l —2<x<2
where thetangent is parallel to x — axis.
5.6.2 Mean Value Theorem (Law of the mean dueto Lagrange) :
Many results in this section depend on one central fact called law of the
mean or mean value theorem due to Joseph — Louis Lagrange.
Theorem :Let f(x) be a rea valued function that satisfies the following
conditions :
(i) f(x) iscontinuous on the closed interval [a,b]
(i) f(x) isdifferentiable on the open interval (a,b)
Then there exists at least one point ¢ € (a,b) such that

£'(c) :Kt—’g%@ (1)

Some Observations::

¢ Note that if f(a) = f(b) then the law of the mean reduces to the Rolle's
theorem.

¢ Interpretation of law of the mean when applied to an equation of motion
s=A1(t) :

The quantity As = f(b) — f(@) is the change in s corresponding to
At=b- aandRH.S of (1) is

f(lb)—f(a _ As . _ _
b_a - AL- average velocity fromt=atot=h.

The equation then tells us that there is an instant ‘'c’ between a and b at
which the instantaneous velocity f ’(c) is equa to the average velocity. For
example, if acar has traveled 180 kms in 2 hours then the speedometer must
have read 90 kms/hr at least once.

# Thedopef'(c)of the curve a C (c, f(c))
f(b) —f(a
b—
chord joining the points A (a f(a)) and
B (b, f(b)). Geometrically means that if the
function f is continuous on [ab] and
differentiable on (a,b) then there is atleast one
number ¢ in (a,b) where the tangent to the
curveisparallel to the chord through A and B.

is the same as the dope of the
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Remarks (1) : Since the value of ¢ satisfies the condition a < ¢ < b, it follows

that (c—a) < (b—a) org:z (<1) =0, (say).

ie, C%: =9 => c-a=0(b-a), 0<6<1.

Butthen c=a+6(b-a)
.. the law of the mean can be put in the form
f(lb) —f(a) = (b—a) f'(c)
=(b-a) f'[a+06(b-a)], 0<06<1
and thisis used in calculating approximate values of functions.
(2) Letting b —a = h, the above result can be written as
fa+h) =f(a) +hf'(a+6h), 0<6<1
(3) If welet a = x, h = Ax, law of the mean becomes
f(x + AX) = f(X) + Axf'(x+ 6AX) for some 6 suchthat 0 <6 < 1.
Example 5.24 : Verify Lagrange' s law of the mean for f(x) = xC on [-2,2]
Solution : fisapolynomial, hence continuous and differentiable on [— 2, 2].
f(2) =23=8; f(-2) = (-23=-8
f/(x) = 3¢ = f'(c) =3c?
By law of the mean there exists an element ¢ € (- 2, 2) such that

f'(c)=ﬂ%)ﬂélz :»3(:2:%?2:4
i.e cz—é:c—JrL
.C,, —3 —_\/5

Therequired ‘¢’ in the law of mean are \%and —\%asboth liein[-2,2].

Example 5.25:

A cylindrical hole 4 mm in diameter and 12 mm deep in a metal block is
rebored to increase the diameter to 4.12 mm. Estimate the amount of metal
removed.

Solution : The volume of cylindrical hole of radius x mm and depth 12 mm s
given by
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——————

V=fx=12n~¢ I .

= f'(c) = 24nc. i
To estimate f(2.06) — (2) : '
By law of mean, | _4mm | g
f(2.06) —f(2) = 0.06 f'(c) =
=0.06 (24 nc), 2<c<2.06 !
Takec=2.01 5
f(2.06) - f(2) = 0.06 x 24 1 x 2.01 REEEToR
= 2.89 1t cubic mm. Fig.5.15

Note : Any suitable ¢ between 2 and 2.06 other than 2.01 also will give other
estimates.
Example 5.26 : Suppose that f(0) = - 3 and f'(x) <5 for all values of x, how
large can f(2) possibly be?
Solution : Since by hypothesis f is differentiable, f is continuous everywhere.
We can apply Lagrange's Law of the mean on the interval [0,2]. There exist
atleast one ‘¢’ (0, 2) such that
f(2) - f(0) = f'(c) (2-0)
f(2) = f(0) +2f'(c)
=-3+2f'(c)

Given that f '(X) < 5 for al x. In particular we know that f '(c) < 5.

Multiplying both sides of the inequality by 2, we have
2f'(c) < 10
f(2) =-3+2f'(c)<-3+10 =7

i.e., the largest possible value of f(2) is 7.
Example 5.27 : It took 14 sec for a thermometer to rise from —19°C to 100°C
when it was taken from a freezer and placed in boiling water. Show that
somewhere along the way the mercury was rising at exactly 8.5°C/sec.
Solution : Let T be the temperature reading shown in the thermometer at any
time t. Then T is a function of time t. Since the temperature rise is continuous
and since there is a continuous change in the temperature the function is

differentiable too. .. By law of the mean there exists a ‘ty in (0, 14)
such that
T(t) - T(t)
tbot; (to)

Here T '(tg) isthe rate of rise of temperature at C.

25



Heret, —t; =14, T(t,) =100; T(t;) =-19

100+19 119
T'(ty) == 14 =74 = 85Clsec
EXERCISE 5.4

(1) Verify Lagrange'slaw of mean for the following functions :
i f=1- X2, [0,3] (i) f(x) :)—1(, [1,2]
(i) ) =23+ ¥ -x-1,[0,2] (V) f(x) = x¥3, [-2,2]
v) f(x)=x3-5x° - 3x, [1,3]

(2) 1ff(1)=10andf’(x) >2 for 1< x<4 how small can f(4) possibly be?

(3) At 2.00 p.m acar's speedometer reads 30 miles/hr., at 2.10 pm it reads
50 miles / hr. Show that sometime between 2.00 and 2.10 the

acceleration is exactly 120 miles Ihr?.

Generalised L aw of theMean :

If f(x) and g(x) are continuous real valued functions on [a,b] and f and g
are differentiable on (a,b) with g '(x) # 0 everywhere on (a,b) then there exist
f(b) —f(a _f'(c)
9b) -9(@ ~ g'(c)

atleast one value of x, say x = ¢, between a and b such that

Remarks:
(1) Thistheorem isaso known as Cauchy’s generalised law of the mean.

(2) Lagrange's law of the mean is a particular case of Cauchy law of the
mean for the case g(x) =xfor al x € [a,b]

(3) Note that g(b) = g(a), for, suppose g(b) = g(a), then by Rolle's
theorem, g'(xX) = 0 for some x in (a,b) contradicting hypothesis of the
generalized law of the mean.

Extended L aw of the mean :

If f(x) and its first (n — 1) derivatives are continuous on [a,b] and if f"(x)
existsin (a,b), then there exist atleast one value of x, x =c¢ say, in (a,b) such
that
'(a)

£ (I’] 1)
(a) (b— ) +. +_(_a)_(b_ )n—l J_)'(b— ) ( )

n—1)!

f(o)=f(a)+ =~ (b- )+
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Remarks: (1) If intheextended law of themean b—a=h then b=a+h
and (1) becomes
" (n—1) (n)
fla+ h)-f(a)+J‘2 UZ!EQ h? +...f(n#_l)—lalh”‘Hf—m(g2 h" ..(2)
for somec e (a, a+ h) and thisis known as Taylor’s theorem.
(2) When bisreplaced by the variable x then (1) becomes

' (n-1) (n)
f(x) =f(a) + %!91 (x—a) +...f(n—_l()Ta)(x—a)"‘1 + UE)(x a)"

for somec € (a, X)
(3) If n becomes sufficiently large (i.e., ; asn — ) in Taylors theorem, then
(2) becomes

" (n)
f(a+ h) = f(a) +J—2 Uz!gzh2+...+f—m@ A+ (3

provided f is dlfferentlable any number of times. This series of expansion
of f(a + h) about the point a is usually known as Taylor’s Series.
(4) If inthe extended law of the mean aisreplaced by 0 and b is replaced with

the variable x, (1) becomes,

" (n-1) (n)

f(x) = f(0) +J—2x+ UZ!Q X2 +...+ﬁ,92 X1y %9 X" __(4)
for somec € (0,X) and isknown as Maclaurin’s theorem.
(5) If nis sufficiently large (i.e., n —> o) in Maclaurin’s theorem, then it

=1(0) +J—zx+u2,9x2+

provided f is differentiable any number of times, This series expansion of f(X)
about the point O isusually known as Maclaurin’s Series.

becomes f(x)

[llustration : The Taylor's series expansion of f(X) = sin x about X :% is
obtained by the following way.

fx) =snx ; f(%) =sn3 =1

f'(x) = cosx ; f’(%) :cos% =0

f'""(x) = -cosx ; f'"

f7() = -sinx ; f@
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. f(x) =din x = f(§)+T
=1+ O(X—E) + ﬁ_z—!ll(x_g)zt..

4
R Y (N A X—E)

Example 5.28:
Obtain the Maclaurin's Seriesfor

1) & 2) logg(1+x) 3) arctan x or tan x

N

Solution :

(1) fx)=€¢ : f0) =e&=1
f'fo=¢e ; f/0)=1
fr =€ ; £70) =1

| 1.x 1., 1
f)=€'=1 +l_!x +EX2 +§x3

X2

=1+3 + 5 +§—?+... holds for all x

(2 f(x) =logg(1+x): f(0) = logel=0

PO =13 i f@=1
fr(x) = (1:1)()2 f7(0) = -1
f'(x) = (lf'i)g 170 = 2!
frron(x) = (11;2)'(?4 £ = - (3

| |
f(x) = logg(L +X) = 0+%x—%x2 + %x3—%x4 o

X X

X2
X-—5+3 -7+ -1<x<1.
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A3) f(x) =tan x ; f(0)=0

1 4
' =—F = — |
f'(X) 1+ 2 1-x%+x*—x8, ; F'(0)=1=1

fr(X) = —2x+4x3—6x>.... : £(0) = 0
f7/(x) = — 2+ 12 -30x* ... ; £"(0) = —2=—(2))
fV(x) = 24x - 120> ... ; f0) = 0
fY) = 24-360x° .... ; fY(0) = 24=41
|
tan‘lx:0+1—1!x+%x2—%x3+—x4+4—x5+

_, 13 15
—X—3X +5X - ...

holdsin|x|< 1.

EXERCISE 5.5
Obtain the Maclaurin’s Series expansion for :

D& (2) cosx (3)11)( @tanx —5 <x<y
5.7 Evaluating Indeterminateforms:

Suppose f(x) and g(x) are defined on some interval [a,b], satisfying
Cauchy’s generalized law of the mean and vanish at apoint X = a of thisinterval

such that f(@) = 0 and g(a) =0, then the ratiog(% is not defined for x = a

and gives a meaningless expression g but has a very definite meaning for
values of x # a. Evaluating the limit x — a of thisratio is known as evaluating

indeterminate forms of the type g

If f(x) =3x—-2 andg(x) =9x+ 7, then % is an indeterminate form

of the type% as the numerator and denominator becomes «o in the limiting

case, X tends to co.
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g lim &, lim lim U

. lim
We also have other limits X=€) 50 X' oo

0 7’ X—> 00
lim o)
x—>1
0.00, o—om, 0° ¥ and 1% respectively. These symbols must not be taken
literally. They are only convenient labels for distinguishing types of behaviour
at certain limits. To deal with such indeterminate forms we need a tool that
facilitates the evaluation. This tool was devised by John Bernoulli for
calculating the limit of a fraction whose numerator and denominator approach
zero. This tool today is known as I'Hopital’s rule after Guillaume Francois
Antoinede I' Hépital .
I"'Hopital’srule:

Let f and g be continuous real valued functions defined on the closed
interval [a,b], f, g be differentiable on (a,b) and g'(c) = 0.

and which lead to other indeterminate forms of the types

f!
Then if lim f(x) =0, lim g(x) = 0 and if lim @ = L it follows that

X—>C X—>C X—>C g()
f
lim é()—% = L.
X—> C
Remarks:

(1) Using I'Hopital’s method, evaluation of the limits of indeterminate
forms works faster than conventional methods. For instance, consider
sin X

lim == This limit we know is 1, which we obtained through
x—>0
geometrical constructions, alaborious method.

COS X

. sinx :
But lim =—= = lim 1 =cosO=1

x—>0 x—> 0
(2) Note that I'Hopital’s rule can be applied only to differentiable
functions for which the limits are in the indeterminate form. For,
lim XL iod nileif I Hopitals rule is applied lim 251 ~1_
x—>0X+3 3 x—>0X+3 1
Heref(x) = x+ 1 g(X) =x+ 3 are both differentiable but not in the
indeterminate form

(3) The conclusion of I"Hopital’s rule is unchanged if lim f(x) =0 and

X—>a
lim g(x) =0 andreplaced by lim f(X) = £ and lim f(X) =+ .
X—>a X—>a X—>a
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(4) All other indeterminate forms mentioned above can aso be reduced to
0

0 or% by a suitable transformation.
We need the following result in some problems
Composite Function Theorem :
Result : If lim g(x) =bandfiscontinuous at b,
X—> a
then lim f(g(xX) = f(lim g(x))

X—>a —sa

: X
Example5.29 : Evaluate: lim nx
x—> 0

. X 0
Solution : lim —— isof thetypes .
o 0 TN X 0

lim ti = lim 12 :%:1
x—>0 ANX s 0 sec X

1
siny,

Example5.30: Find  lim if exists

x—> +oo fan X

. 1
Solution : Let y=3 Asx—>o,y—>0

1
smx

lim = Jim 2NY-_9
x— +oo tan 5 ysotan ly

lim log(sin x)

Example 5.31 :
P (n - 22

x—"/2

Solution : It is of theformg

1
I log(sin x) . sinx “OSX
im 5 = lim
. (m—2X) o 2An = 2X) x(-2)
X—"12 X—"12
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. cotx 0
= lim —]/———==
. —MHrn-2q9 0
x—"12
2
= lim ——COSQCX:—_].
—-4x-2 8
x—"12
Note that here |’ Hopital’ s rule, applied twice yields the result.
2
Example5.32: Evaluate: lim X
X — 00
. . X2 . 0
Solution: lim g isthe type =
X —> 0
lim X—z— lim x lim 2.2 =0
e g
X—> 00 X —> 00 X —> 0

Example 5.33 : Evaluate: lim (cosecx— )—1()

x—> 0

. - 1.
Solution : lim (cosecx— ;)lsof thetype oo — oo.
x—> 0

. 1 . 1 1 . Xx—sinx O
lim (COSGCX— —): lim (— — —): lim - ==
o5 0 X ws 0 \SINX X N X Sinx 0

; 1-cosx 0 - Sinx
M Snx+xcosx\=oype) = M -
NN X_)OCOSX+COSX—XSInX

=0

x Nlo

. sin
Example5.34 : Evaluate: lim (cot x)
x— 0
. sin
Solution : lim (cot x)
x—> 0

X 0
isof thetype ™.
sinx ]
Lety = (cot X) = logy=sinxlog (cot X)

lim (logy) = lim sinx log (cot )
x—>0 x—>0

— |im log(cotx) isofthetypef
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Applying I’ Hépital’ srule,

1 2
lim 109(cotx) _ i cotx (~ CoS”X)
w0 COSECX 'HO —COSEC X cot X

I sin X 1

_0_ 0
0 COSX Xcosx ~ 1~

X—>

i.e, limlogy =0

x—> 0

By Composite Function Theorem, we have

0= lim logy=log lim y) — lim y:eO:]_

x—0 — 0 x—0
Caution : When the existence of lim f(x) is not known, log { lim f(x)} is

X—>a X—>a
meaningless.

. sinx
Example5.35: Evauate lim x

X—> 0+

p)

. . sinx 0
Solution: lim x  jsof theform 0".

x—> 0+
sinx
Letey=x =logy=sinxlogx.
Note that x approaches 0 from the right so that log x is meaningful

. log x

i.e, logy = COSEC X

. . log x L —®©
lim Jogy = lim which is of the type— .
x— 0+ 9y x»0+cosecx P ®©

Applying I'’Hopital’srule,

1
. ; X
lim 99X _ i — X
vy 0+ COSCX 4 ,—COSEC X COt X
;2
. —sin“X 0
= lim (of thetype—)
oy 0+ X COSX 0
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2 Sin X CoS X

= lim - =0
s 0+ X SINX— COS X
ie, lim jogy =0
x—> 0+
By Composite Function Theorem, we have
0= lim |Ogy:|og lim y = lim y:eO:]_
x—> 0+ x>0+ x—> 0+
Example 5.36:
The current at timet in a coil with resistance R, inductance L and subjected

—Rt
. . . _E T :
to a constant electromotive force E is given by i =& (1— et ) . Obtain a

suitable formulato be used when Ris very small.

Solution :
(1ot )
lim . . E\il-el _ 0
rRso | = lim ——p— (isof thetype o)
R—0
t Rt
L
o Expe B Et .
= lim — 1 L= lim |:r|sthewltableformula
R—0 R—0
EXERCISE 5.6
Evaluate the limit for the following if exists,
. sinmx . fanXx—X
1) lim=—= 2) lim ——=
@ x—>2 27X @ x— 0 X = SNX
| n n
@) lim 30X @ lim X=2
x— 0 X— 2 X-2
1 1 (1
sin)—z( F—Ztan (Q)
5 i .
(5) lim 1y (6) lim 1
X — 00 X — 00 X
. logex __cotx
(7 lim —~— (8 lim ot 2x
X—> 00 x—0
1
© lim x°logex. (10) lim x 1
X—>0+ Xx—>1



(12) |im_(tanx)cosx (12 M X

X—0+
x—"2

1
lim Ix
(13) ., , (cosx)

5.8 Monotonic Functions::
Increasing, Decreasing Functions

Differential calculus has varied applications. We have already seen some
applications to geometrical, physical and practical problemsin sections 5.2, 5.3
and 5.4 In this section, we shall study some applications to the theory of real
functions.

In sketching the graph of a y
function it is very useful to 4 Positive
know where it raises and where Gradien
it falls. The graph shown in
Fig. 5.16 raises from A to B,
falls from B to C, and raises
again from Cto D.

The function f is said to be

4
(0]

y =f(x)
Negative
Gradient
(slope)

Positive
Gradient
(slope)

D

b o - w

increasing on the interval [a,b],

[ 7 R ——

decreasing on [bc], and a X, X b
increasing again on [c,d]. We )
use this as the defining property Fig.5.16

of an increasing function.
Definition : A function f is caled increasing on an interval | if
f(xq) < f(xp) whenever x; < x, inl. Itiscaled decreasing on | if f(xq) > f(x,)
whenever x; <X, inl.

A function that is completely increasing or completely decreasing on | is
called monotonic on 1.

In thefirst case the function f preserves the order.

1.8, X1 <X = f(Xq) < f(xy) and in the later case the function f reverses the
order i.e, X1 < Xo = f(x9) 2 f(X5). Thanks to the order preserving property,
increasing functions are also known as order preserving functions. Similarly,
the decreasing functions are also known as order reversing functions.
[llustrations:

(i) Every constant function is an increasing function.
(ii) Every identity function is an increasing function.
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(iii) The function f(x) = sin x is not an increasing function on R; but
f(xX) = sinxisincreasing on [O, %} .

(iv) Thefunction f(x) = 4 — 2xis decreasing

(v) Thefunction f(x) = sin x is decreasing in the interval E n}

Notethat f isincreasing is equivalent to (— f) is decreasing.

Do you agree that each constant function is both increasing and
decreasing?
Caution : It is incorrect to say that if a function is not increasing, then it is
decreasing. It may happen that a function is neither increasing nor decreasing.
For instance, if we consider the interval [0,x], the function sin X is neither
. . . - . T . T
increasing nor decreasing. It is increasing on [O, E} and decreasing on [5, n}.
There are other functions that are even worse. They are not monotonic on any
subinterval aso. But most of the functions that we consider are not so bad.

Usually, by looking at the graph of the function one can say whether the
function is increasing or decreasing or neither. The graph of an increasing
function does not fall as we go from left to right while the graph of a decreasing
function does not rise as we go from left to right. But if we are not given the
graph, how do we decide whether a given function is monotonic or not ?
Theorem 1 gives us a criterion to do just that.
Theorem 1 : Let | be an open interval. Let f : | — R be differentiable. Then
(i) fisincreasing if and only if f'(x) > O for al xin .
(ii) fisdecreasing if and only if f'(x) < Ofor all xinl|.
Proof : (i) Letfbeincreasingand x e |. Sincefisdifferentiablef '(x) exists and

lim f(x+h) —f(x)

h—0 h
increasing, f(x + h) > f(x). Hence f(x + h) —f(x) > 0.

If h<O,thenx+h<xandf (x+h) <f(x). Hencef(x + h) — f(x) <0

So either f(x + h) — f(X) and h are both non-negative or they are both
non — positive.

Therefore litSaoEl (0]

h is non-negative for all non-zero values of h and

isgiven by f'(x) = .Afh>0,thenx+h>x and sincefis

+ —
lim flx hh flx must also be non-negative. Thus, f'(x) >0

h—0
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Conversely, let f '(x) > 0, for al xinl. Let x; < X, in|. We shal prove
that f(x1) < f(xy).

By the Law of DD ey

y the Law of mean, Xg—Xg (c) , forx;<c<xy

. , f(xo) —f(x)

Since, f'(c) > 0, we have TXo—Xg > 0. AlSO X9 —X1> 0 (. Xq < Xo)

Thusf(xy) — f(x1) =0 or f(x;) <f(x,). Hencefisincreasing

(ii) can be proved in a similar way. It can aso be deduced by applying result

(i) to the function (—f).

Geometrical interpretation : The above theorem expresses the following
geometric fact. If on an interval | = [a,b] a function f(x) increases, then the
tangent to the curvey = f(x) at each point on thisinterval forms an acute angle ¢
with the x-axis or (at certain points) is horizontal (See Fig.5.16), the tangent of
this angle is not negative. Therefore f '(xX) = tan ¢ > 0. If the function f(x)
decreases on the interval [b,c] then the angle of inclination of the tangents form
an obtuse angle (or, at some points, the tangent is horizontal) ; the tangent of
thisangleis not positive f '(x) = tan y < 0.

From the class of increasing functions we can separate out functions which
are strictly increasing. The following definition gives the precise meaning of the
term strictly increasing function.

Definition : f: | - Rissaid to be strictly increasing if x; < X, implies that f(x;)
< f(xo). We can similarly say that a function defined on | is strictly decreasing
if Xg <X impliesf(xq) > f(xy)

For example, a constant function is not strictly increasing, nor is it strictly
decreasing (Fig. 5.17). The greatest integer function f(X)= [ x] too, is increasing
(Fig. 5.18), but not strictly increasing, where as the function f(x) = x is strictly
increasing (Fig. 5.19).

y Y y
A 4 A 7+
—s D
3 e &
1] fx) =1 o 1} —
2 > x 0 > X
e 1 3
0 R — 12
Fig. 5.17 Fig. 5.18 Fig. 5.19



Theorem 2:
(i) Letf’bepositiveonl. Thenfisstrictly increasingon .
(i) Letf’ benegativeonl. Thenfisstrictly decreasingon |.
The proof of the theorem is easy and is|eft as an exercise.

Corollary : fis strictly monotonic on the interval I, if f' is of the same sign
through out I.

You may have noticed that there is a difference between the statement of
Theorem 1 and Theorem 2.

“fisincreasing if and only if f' is non — negative”

“I1ff' >0, thenfisstrictly increasing”.

Can we haveif and only if in Theorem 2 also ?

The answer is no as shown in the following example.
[llustration : Definef: R— R by f(x) =x3.

Suppose X1 < Xp, Then x,—x; >0 and xl2 + x22 >0
Thisimplies x23 - x13 = (X —Xp) (x22 + xlz + Xq X9)

= (1) 31062+ X+ 0 + 371 >0
= %13 < %8
Thus whenever x; <Xy, f(Xq) <f(xy).
Hence f(x) = X isstrictly increasing.
Butitsderivatef’(x) =3x2 andf’(0) = 0.
Henceitsderivatef ' isnot strictly positive.

Note: If a function changes its signs at different points of a region (interval)
then the function is not monotonic in that region. So to prove the

non- monotonicity of afunction, it is enough to provethat f ' has different signs
at different points.
Example 5.37 : Prove that the function f (X) = sin X + cos2x is not monotonic on

theinterval [O, ﬂ .

Solution : Let f(X) = sin X + cos 2x
Thenf'(X) = cosx—2sin 2x
Now f’(0) = cos0-2sin0=1-0=1>0

and f'@ = COS@— 25"”2@

1
—\/§—2X1<0
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Thusf ' isof different signsat 0 and % Therefore f is not monotonic on [O, ﬂ
Example 5.38 : Find the intervals in which f(x) = 23 + X% —20x is increas ng
and decreasing.

Solution : f'(X) = 6x% + 2x—20 = 2(3x% + X— 10) =2 (x + 2) ( 3x-5)
Nowf'(x) = 0 = x =—2, and x=5/3. Thevalues— 2 and 5/3 divide the real
line (the domain of f(X)) into intervals (-0, —2), (- 2, 5/3)and (5/3, ») .

»

—o 2 0 53 o
Fig. 5.20
I nterval X +2 3x-5 f'(x) Interval of inc/dec
—<X<-2 - - + Increasing on (— «, —2]
-2<x<5/3 + - - decreasing on [ 2, 5/3]
5/3<x< + + + increasing on [5/3, )

Note (i) : If the critical numbers are not included in the intervals, then the
intervals of increasing (decreasing) becomes dtrictly increasing (strictly
decreasing)

Note : (ii) The intervals of inc / dec can be obtained by taking and checking a
sample point in the sub-interval.

Example 5.39 : Prove that the function f(x) = %2 — x + Lis neither increasi ng nor
decreasing in [0,1]

Solution : f(x) = C-x +1
f'(x)=2x-1

f'(x)=0 forxz% i.e., XE[%,1:| N (9] isincreasingon[:—ZL,lJ

Alsof'(x) <0 forxs%:x € [O, %}.Alsof’(x) isdecreasing on [O, :—ZL}

Therefore in the entire interval [0,1] the function f(X) is neither increasing
nor decreasing.
Example 5.40 : Discuss monotonicity of the function

f(x) =sinx, x € [0, 2n]
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Solution: f(x)=sinx and f'(x)=cosx=0 forx:% S—Zﬂ in[0,2r] Now

3 L .
f'(X)>0 for0<x< % and 7“ <X < 2n. Therefore f(X) = sin x isincreasing on

i 3 . . . 3
_O, g} and[jn, 275} i.e, sinxisincreasing on[o,g}u[g, 211}

Also, f'(x) <0 for gs X < S—ZTE . Therefore f(X) = sin x is decreasing on

s %J
2° 2

Example 5.41 : Determine for which values of x, the function y = X2
x # =1 isdtrictly increasing or strictly decreasing.
Solution :

_xX=2 o dy _(x+D1-(x=2)1__ 3
V5w et s (x + 1)? (x+1)

5 >O0forall x=-1.

..y isdtrictly increasing on R — {-1}.
Example 542 : Determine for which values of x, the function
f(x) = 23 — 15x% + 36x + 1 is increasing and for which it is decreasing. Also
determine the points where the tangents to the graph of the function are parallel
tothe x axis.
Solution : f/(x) = 6x% — 30X + 36 = 6(X — 2) (X — 3)

f'(x) = 0 = x=2, 3. Therefore the points 2 and 3 divide the real line
into (- oo, 2), (2, 3) (3, ).

Interval X -2 X=3 | f'(x) Intervals of inc/ dec
—0<X<2 - - + increasing on (— o, 2]
2<x<3 + - - decreasingon [2, 3]
3<X<w + + + increasing on [3, )

The points where the tangent to the graph of the function are paralel to the
x—axisaregivenby f'(x)= 0, ie, whenx=2,3 Now f(2) =29 and f(3) = 28.
Therefore the required points are (2, 29) and (3, 28)
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Example 5.43:

Show that f(x) = tan~t (sinx + cosx), x > 0 isadtrictly increasing function

intheinterva (0, %) .

Solution:  f(x) = tan’l(sin X + COS X).

f'(x) = 1 (cosx—sinx)—w>0
1+ (sin x + cosx)2 2+8n2x

since cosx-sin x> 0intheinterva (O, %)

and 2 +sin 2x > 0)

D
)
©)

(4)

(®)

f(X) isstrictly increasing function of x in the interval (0%)
EXERCISE 5.7

Prove that € is strictly increasing function on R.
Prove that log x is strictly increasing function on (0O, «)

Which of the following functions are increasing or decreasing on the
interval given ?

(i) ¥ ~10n[02] (i) 20+ 3¢ on| 3.5 |
(iii) €*on[0,1] (V) X(x—1) (x+ 1) on [-2, ~1]

(v)xsinxon[O,%J

Prove that the following functions are not monotonic in the intervals
given.

(i) 2 +x-50n [-1,0] (i) x(x—1 (x+1) on[0,2]
(iiii) x sin x on [0,7] (iv) tan x + cot x on(o,g)
Find the intervals on which f isincreasing or decreasing.
(i) f(x)=20-x-x° (i) f)=x>-3x+1
(i) f)=x>+x+1 (iv) f(x)= x-2sinx, [0, 2x]

4 4

(v) f(X)=x+cos xin[0,n] (vi) f(x)=sin"x+cos'xin[0, n/2]
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Inequalities:

Example 5.44 :
Provethat € > 1+ x for al x> 0.
Solution : Letf(x) =€ -x-1= f'(X)=€-1>0forx>0

i.e, fisstrictly increasing function. .. for x>0, f(x) > f(0)

ie, (-x-1) > @€ -0-1) ;: &>x+1
Example 5.45:

Prove that the inequality (1 + x)" > 1+nx istrue whenever x>0and n > 1.
Solution : Consider the difference f(x) = (1+X)" - (1 + nx)

Then f'() = n@@+x™—n = n[@+x"1-1]
Sincex>0andn-1>0, wehave(1+ x)”_1> 1, sof'(x) >0.
Thereforef isstrictly increasing on [0, ).
Forx>0=f(x) >f(0) i.e, (1+X)"—(1+nx)>(1+0)—(1L+0)

ie,(1+X"-(1+n)>0 ie, (L+x">(1+nx)

Example 5.46 : Provethat sin x < x < tan x, Xe(O, %)

Solution :
Let f(X) =x—sinx y R qx=nn
T A s <
f'(x)=1-cosx>0for0<x<3 [ ///
=~/ 3
.. fisdtrictly increasing.
For x > 0, f(x) > f(0) y =sinx
=>Xx-8snx>0=x>sinx ...(1) 0 2
> X
Letg(x) =tanx—x
gx)= sec® — 1 =tan’x>0in (0, %) Fig. 5.21

.. gisstrictly increasing
For x>0, f(x) >f(0) > tanx—-x>0=tanx>X... (2)
From(1)and (2) sinx<x<tanx
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EXERCISE 5.8

(1) Provethefollowing inequalities:
2

) cosx>1—X§, x>0

(iii) tan "t x < x foral x>0

3

(i) sinx>x-"g, x>0

(iv) log (1 +x) <x foral x>0.

5.9 Maximum and Minimum values and their applications:

“For since the fabric of the Universe is most perfect and the work of a
most wise creator, nothing at all takes place in the Universe in which some rule

of maximum or minimum does not appear”

Some of the most important
applications of differential calculus are
optimization problems, in which we are
required to find the optimal (best) way of
doing something. In many cases these
problems can be reduced to finding the
maximum or minimum values of a
function. Many practica problems
require usto minimize a cost or maximize
an area or somehow find the best possible
outcome of a situation.

Leonard Euler

Fig. 5.22

Let usfirst explain exactly what we mean by maximum and minimum values.

In fig 5.22 the gradient (rate
of change) of the curve changes
from positive between O and P
to negative between P and Q and
positive again between Q and R.
At point P, the gradient is zero
and as x increases, the gradient
(dope) of the curve changes
from positive just before P to
negative just after. Such a point
is called a maximum point and
appears asthe ‘crest of awave'.
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At point Q, the gradient is
also zero and as x increases the A
gradient of the curve changes
from negative just before Q to
positive just after. Such apoint is
caled a minimum point and /
appears as ‘the bottom of a

—-
—~

[=%
~

o YR
(=

1 1 !
valley'. Points such as P and Q f@n i : >
are given the general name, a0lb c ¢
turning points. Fig. 5.24

It is possible to have a turning point, the gradient on either side of which is
the same. Such a point is given the special name of a point of inflection as
shown in Fig 5.23.

Definition : A function f has an absolute maximum a c if
f(c) > f(x) for dl x in D, where D is the domain of f. The number f(c) is called
maximum value of f on D. Similarly f has an absolute minimum at c if
f(c) < f(x) for dl xin D and the number f(c) is called the minimum value of f on
D. The maximum and minimum values of f are called extreme values of f.:

Fig.5.24 shows the graph of a function f with absolute maximum at d and
absolute minimum at a. Note that (d, f(d)) is the highest point on the graph and
(a, f(a)) isthe lowest point.

In Fig. 5.24 if we consider only values of x near b, for instance, if we
restrict our attention to the interval (a,c) then f(b) is the largest of those values
of f(x) and is called a local maximum value of f. Likewise f(c) is called a local
minimum value of f because f(c) < f(x) for x near c, in the interval (b,d). The
function f aso has a local minimum at e. In general we have the following
definition.

Definition : A function f has a local maximum (or relative maximum) at ¢
if there is an open interval | containing ¢ such that f(c) > f(x) for al x in I.
Similarly, f has alocal minimum at c if there is an open interval | containing ¢
such that f(c) < f(x) for al xin|.

[llustrations : (1) The function f(x)=cos x takes on its (local and absolute)
maximum value of 1 infinitely many times since cos 2nr = 1 for any integer and
-1 <cosx<1foral x. Likewise cos (2n + ) = -1 isits (local and absolute)
minimum value, nisany integer.



2 If f = 2, then f(x) > f(0)
because x° > O for al x. Therefore
f(0) = 0 is the absolute (and local)
minimum value of f. This
corresponds to the fact that the
origin is the lowest on the parabola
y= x> See Fig.5.25 However, there
is no highest point on the parabola
and so this function has no
maximum value.

3 If f(x) = % then from the graph
of f(xX) shown in Fig 5.26, we see
that this function has neither an
absolute maximum value nor an
absolute minimum value. In fact it
has no local extreme values either.

(4) Consider the function

f(x) = - 163+ 18¢° ; -1 < x< 4.
The graph isshown in Fig. 5.27.

We can see that f(1) = 5 is a loca
maximum, whereas the absolute maximum
isf(-1)=37. Alsof(0) =0isaloca minimum
and f(3)= —-27 is both loca and absolute
minimum.

We have seen that some functions have
extreme vaues, while others do not. The
following theorem gives conditions under
which a function is guaranteed to possess
extreme values.
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The Extreme value theorem : If f is continuous on a closed interval [a,b]
then f attains an absolute maximum value f(c) and an absolute minimum value

f(d) at some number cand din [a,b]

The next two examples show that a function need not possess extreme
values if either of the hypotheses (continuity or closed interval) is omitted from

the extreme value theorem.
(5) Consider the function

f(x) = {xz , 0<x<1
(x) =
0 , 1<x<£2

The function is defined on the
closed interval [0,2] but has no
maximum value. Notice that the
range of f isthe interval [0,1). The
function takes on value close to 1
but never attains the value 1.

>

Fig. 5.28

This is because the hypotheses of f to be continuous fails. Note that x = 1 isa

point of discontinuity, for,

Lim Lim

X—>1- f9 = Xx=>1- (

(6) The function f(x) =x°, 0<x<2
is continuous on the interval (0,2)
but has neither a maximum nor a
minimum value. The range of f is
the interval (0,4). The values 0 and
4 are never taken on by f. Thisis
because the interval (0,2) is not
closed.

Lim _
x> 1+ 19=0
y
A
4
f(x) =x2,0x<2

No Maximum
No Minimum

TI + + » x

2
Fig. 5.29

If we ater the function by including either end point of the interval (0,2)
then we get one of the situations shown in Fig. 5.30, Fig. 5.31, Fig. 5.32 In
particular the function f(x) = x%, 0 < X < 2 is continuous on the closed interval
[0,2]. So the extreme value theorem says that the function has an absolute

maximum and an absolute minimum.



4 4 4
f, () =0, 02 £ ® =202 f; () =2, 0<x<2
Maximum f, (2) =4 No Maximum Maximum £, 2) =4
No Minimum Minimum £, (0) =0 Minimum £, (0) =0
> x > x >
OI 2 0 2 0 2 > X
Fig. 5.30 Fig.5.31 Fig. 5.32

Inspite of the above examples we point out that there are functions which
are neither continuous nor differentiable but still attains minimum and
maximum values. For instance, consider

¢ _{1 , Xisirrational
(x) = 0 , xisrationa

(This function is known as characteristic function on the set of irrationa
numbers)

This function is nowhere differentiable and everywhere discontinuous. But
the maximum value is 1 and the minimum value is 0.

The extreme value theorem says that a continuous function on a closed
interval has a maximum value and minimum value, but it does not tell us how to
find their extreme values.

Fig. 5.33 shows the graph of a

function f with a local maximum at 4 (@ f)
¢ and a local minimum at d. It

appears that at the maximum and /
minimum points the tangent line is
horizontal and therefore has slope
zero. We know that the derivative
is the slope of the tangent line, so it 0 c
appear that f'(c) =0and f '(d) = 0. Fig. 5.33

The following theorem shows that this is aways true for differentiable
functions.

'd, £ (@)

O|=——

Fermat's Theorem : If f has a local extremum (maximum or minimum) at ¢
and if f'(c) existsthenf’(c) =0.

The following examples caution us that we cannot locate extreme values
simply by setting f '(x) =0 and solving for x.
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(7) The function f(x) = | x | has its
(local and absolute) minimum value at
0, but that value cannot be found by
setting f '(x) = O because f'(x) does
not exist.

(8) Thefunction f(x)=3x—-1,0<x<1 ﬂ
has its maximum value when x = 1 but | 42
f'(1) = 3 # 0. This does not contradict y=3x-1
Fermat’'s Theorem. Since f(1) = 2 isnot a It [ o<x<1
local maximum. _ — > x
Note that the number 1 is not 1 0 / L2

contained in an open interval in the -1¢%0,-1)
domain of f. .

Fig. 5.35

Remark : The above examples demonstrate that even when f '(c) = 0 there
need not be a maximum or minimum at c. Further more, there may be an
extreme value even when f'(c) = 0 or when f’(c) does not exist.

y

(9) 1ff(x) =x3. Thenf’(x) = 3%, A
sof’(0) = 0. 6 ,
But f has no maximum or minimum y=r
a 0 as you can see from its graph. 4
(observethatx3>0forx>0andx3<0 _2%
for x < 0). > 4 x
The fact that f '(0) = 0 simply means -2
that the curve y = x> has a horizontal -4
tangent at (0,0). Instead of having a -6
maximum or minimum at (0, 0) the curve -8
crosses its horizontal tangent there.
Fig. 5.36

Fermats' theorem does suggest that we should atleast start looking for
extreme values of f at the numbers c wheref ’(c) = 0 or f '(c) does not exist.

Definition : A critical number of a function f is a number ¢ in the domain of f
such that either f'(c) =0 or f'(c) doesnot exist.
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Stationary points are critical numbers c in the domain of f, for which f ’(c)= 0.

3
Example 5.47 : Find the critical numbers of x 's 4-x
3 8
Solution : f(x) = ax’s — x5
' — 1_2 _2/5 § 3/5
f'(x) = 5 X -5 X

-2
= 2x 5 @3-
Thereforef'(x) =0if3-2x =0 i.e, ifx=g.f'(x) does not exist when

X =0. Thusthe critical numbers are 0 and g .

Note that if f has alocal extremum at ¢, then c is a critical number of f, but
not vice versa.

To find the absolute maximum and absolute minimum values of a
continuous function f on aclosed interval [a,b] :

(1) Findthevauesof f at the critical numbers, of f in (a,b).
(2) Findthevauesof f(a) and f(b)

(8) Thelargest of the values from steps 1 and 2 is the absolute maximum
value, the smallest of these values is the absolute minimum value.

Example 5.48 : Find the absolute maximum and minimum values of the
function. () =xC-3C+1, -3 <x<4

Solution : Note that f is continuouson ; [7% ,4]

f(x) = x3- 3¢ +1
f'(x) = 3%% — 6x =3x(x-2)

—
an 0

Al

1 2 3
Fig. 5.37

Since f'(x) existsfor al x, the only critical numbersof farex=0, x =2.

Both of these critical numbers lie in the interval [—:—ZL ,4} .Vaue of f at
these critical numbersaref(0) =1 and f(2) =-3.
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The values of f at the end points of the interval are

1\ _ ( 1\3 1\2,,_1
(8)=(2) =) e
and f(4) = 4°-3x 42+1=17
Comparing these four numbers, we see that the absolute maximum value is
f(4) = 17 and the absolute minimum valueisf(2) = - 3.

Note that in this example the absolute maximum occurs at an end point, whereas
the absolute minimum occurs at a critical number.

Example 5.48(a): Find the absolute maximum and absol ute minimum values of
f(x) =x—2sinx, 0<x< 2nm.
Solution : f(x) =x-2sinx, iscontinuousin [0, 2x]
f'(x) = 1-2cosx
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f'X) =0 =>cosx =5 = X=

Thevalue of f at these critical points are

~ 6.968039
Thevaues of f at theend pointsaref(0) =0 andf(2r) =2~ 6.28

Comparing these four numbers, the absolute minimum is f %) = % - \/§ and

the absolute maximum is f (%n) = %n+ A[3. In this example both absolute

minimum and absolute maximum occurs at the critical numbers.

Let us now see how the second derivatives of functions help determining
the turning nature (of graphs of functions) and in optimization problems.

The second derivative test : Suppose f is continuous on an open interval
that containsc.

@ Iff'(c)=0andf’(c) >0, thenfhasaloca minimumatc.
(b) Iff’(c)=0andf’(c) <0, thenfhasaloca maximum at c.
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Example 5.49 : Discussthe curvey = x* — 4x3 with respect to local extrema.
Solution : f(x) = X — a3
fr(x) = 43— 122, £"(x) = 12x° — 24x
To find the critical numberswe set f'(X) =0 and obtainx =0and x= 3. To

use the second derivative test we evaluate the sign of f ' at these critical
numbers.

f'"(0)=0,f"(3)=36>0.Sincef'(3)=0andf"(3) >0, f(3) =— 27 isaloca
minimum value and the point (3, —27) is a minimum point. Since f "’(0) = 0 the
second derivative test gives no information about the critical nhumber 0. But
sincef '(x) < 0 for x < 0 and also for 0 < x < 3, the first derivative test tells us
that f does not have aloca extremum at O.

We summarise the above discussion as follows :
Procedurefor finding and distinguishing stationary points.

(i) Giveny=£fX) determine%))g(i e, £'(¥)

(i) Let SX = 0 and solve for the critical numbers x.

(iii) Substitute the values of x into the original function y = f(x) to find the
corresponding y-coordinate values. This establish the co-ordinates of
the stationary points. To determine the nature of the stationary points,

(iv) Find j—zxg and substitute into it the values of x found in (ii).
If theresultis:
() positive — the point isaminimum one
(b) negative — the point is a maximum one
(c) zero— the point cannot be an extremum (minimum or maximum)
OR

(v) Determine the sign of the gradient (slope f '(X) of the curve just before
and just after the stationary points. If the sign change for the gradient
of thecurveis

(a) positive to negative — this point is a maximum one
(b) negativeto positive — this point is a minimum one

Example 5.50 : Locate the extreme point on the curve y = 3x° - 6x and
determine its nature by examining the sign of the gradient on either side.
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Solution : Following the above procedure

(i) Sincey= 3 - 6x,%: 6Xx — 6

(i) Atastationary point, gy =0, hencex=1
dx

(iii) Whenx =1,y = 3(1)2 — 6(1) = — 3. Hence the coordinates of the
stationary pointis (1, — 3).

If xisdightly lessthan 1, say 0.9, then SX: 6(0.9)-6=-0.6<0.

If xisdightly greater than 1, say 1.1 then% =6(1.1)-6=0.6>0.

Since the gradient (slope of the curve) changes its sign from negative to
positive (1, — 3) isaminimum point.
Example 5.51 :
Find the local minimum and maximum values of f(x) = x* — 3x% + 3x° — x
Solution : f(x) = X - 33 + 3% - x
f/(x) = 4 - 9%+ 6x— 1
At aturning point, f'(x) = 0 gives 4 - 9% +6x—1=0

(x-1%(@x-1) =0 = x=1, 1,%1
1,(1y_-27
Whenx—l,f(l)—Oandwhenx—4,f(4)—256

Hence the coordinates of the stationary points are (1, 0) and G,r , _2_5267)

f/'(x) = 12x° — 18x + 6= 6(2x° — 3x + 1) = 6(x — 1) (2x — 1)

When x = 1, f (1) = 0. Thus the second derivative test gives no
information about the extremum nature of f at x = 1.

1 1 1 -27). . .
Whenxzz,f" (Z):%>O' hence(z,%)|sam|n|mump0|nt.
Caution :

No function will attain local maximum / minimum at the end points of its
domain.
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EXERCISE 5.9

Find the critical numbers and stationary points of each of the following
functions.

(i) f(x) =2x- 3% (i) f(x) = x*-3x+1
_ A5 2 : _ o x+1
(iii) f(x) =x*> (x—4) V) 1) = 2 1

(v) f(6)=sin?20in[0, n]
(vi) f(0) =0 +sin0in[0, 2n]

Find the absolute maximum and absolute minimum values of f on the
giveninterval :

() f) = x*-2x+2,  [03]
() ) = 1-2x—x%  [-4]]
(i) f) = X*—12x+1, [-3,5]

(v) () = \9-x2, [-1,2]

W 0= 37

[1.2]

(vi) f(x) = sinx+ cosx, [O, %}

(vii) f() = x-2cosXx, [-7, ]
Find the local maximum and minimum values of the following :
(i) x°-x (i) 23C+5—4x (i) X*-6x°

(iv) (C-1)° (v) sn®0, [0,n]  (vi) t+cost

5.10 Practical problemsinvolving maximum and minimum values :

The methods we have learnt in this section for finding extreme values have
practical applications in many areas of life. A business person wants to
minimise costs and maximise profits. We aso solve such problems as
maximising areas, volumes and profits and minimising distances, times and
costs. In solving such practical problems, the greatest chalenge is often to
convert the word problem into maximum — minimum problem by setting up the
function that is to be maximised or minimised.

53



As a problem solving technique we suggest the following principles.

(1) Understand the problem : The first step is to read the problem
carefully until it is clearly understood. Ask yourself what is the
unknown? What are the given gquantities? What are the given conditions?

(2) Draw diagram : In most problemsit is useful to draw a diagram and
identify the given and required quantities on the diagram.

(3) Introduce notation : Assign asymbol to the quantity to be maximised or
minimised, say Q. Also select symbols (a,b,c ...,x, y, 2) for the other
unknown quantities and lable the diagram with these symbols.

(4) ExpressQ interms of some other symbols from step 3.

(5) If Q has been expressed as a function of more than one variable in
step 4, use the given information to find relationship (in the form of
equation) among these variables. Then use these equations to
eliminate all but one of these variables in the expression for Q. Thus Q
will be given as a function of one variable x, say, Q = f(x). Write the
domain of this function.

(6) Use the methods discussed to find the absolute maximum or minimum
value of f.

Remarks:

(1) If the domainis a closed interval then we apply the absolute max/min
property to maximize / minimize the given function (see 5.52, 5.58).

(2) If the domain is an open interval then we apply either first derivative
test (5.53) or second test for finding local max / min. Instead of first
derivative one can also apply second derivative test if the second test
exist. Similarly instead of second derivative test one can aso apply
first derivative test.

(3) All these cases ultimately lead us to the absolute max / min only.
Example 5.52 : A farmer has 2400 feet of fencing and want to fence of a
rectangular field that borders a straight river. He needs no fence along the river.
What are the dimensions of the field that has the largest area ?

Solution : y

We wish to maximize the area A
of the rectangle. Let x and y be the x X
width and length of the rectangle (in
feet). Then we express A in terms of
xandyasA=xy

Fig. 5.38



We want to express A as afunction of just one variable, so we eliminate y
by expressing it in terms of x. To do this we use the given information that the
total length of the fencing is 2400 ft. Therefore 2x + y = 2400

Hence vy = 2400 - 2x and the area is A= X (2400 —2X) = 2400 X — 2x°

Note that x > 0 and x < 1200 (otherwise A < 0). So the function that we
wish to maximizeis

A(X) = 2400 x — 2x%, 0< x< 1200.

A'(X) = 2400 — 4%, so to find the critical numbers we solve the equation
2400 — 4x = 0 which gives x = 600. The maximum of A must occur either at this
critical number or at an end point of the interval.

Since A(0) = 0, A(600) = 7,20,000 and A(1200) = 0, thus the maximum
valueis A (600) = 720,000. When x = 600, y = 2400 — 1200 = 1200

Hence the rectangular field should be 600 ft wide and 1200 ft long.

Note : This problem aso be done by using second derivative test (local). In this
casex>0andy>0.

Example 5.53 :
Find a point on the parabola y2 =2x thatiscl o§est to the point (1,4)
Solution : Let (x,y) be the point 4
on the parabola y2 = 2x. The roead
distance between the points (1,4)
and Y =2
(xy) is d =\ (x-1)7+ (v - 47 o
| 2 I
(xy) Ileﬁony2= X =>x= 5,
so d?=f(y) = ()g ~1)? +(y-4)? Fig. 5.39

(Note that the minimum of d occurs at the same point as the minimum of dz)

Y

Now f'(y) = 2(2 —1) ) +2(y-49

:y3—8:0atacritical point.
y3—8 =0 =>y=2 (sincey2+2y+4 =0 isnot possible)
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Observe that f'(Y) < 0 wheny<2 andf’(y) >0wheny > 2, soby the
first derivate test, for absolute extrema, the absolute minimum occurs when

Y

y = 2. The corresponding value of x isx = 5> =2 Thus the point on y2 = 2X

closest to (1,4) is(2,2).
Note: This problem aso be done by using second derivative test
Example 5.54 :

Find the area of the largest rectangle that can be inscribed in a semi circle
of radiusr.

Solution :

Let 6 be the angle made by OP
with the positive direction of x—axis. .

Then the area of the rectangle Ais 0
A(6) = (2r cosB) (r sinb)
=r22sin0® cos0=r?sin 20 Fig. 540
Now A(0) ismaximum when sin 26 is maximum. The maximum value of

X2 4y =p2
P(r cos 6, rsin 0)

» X

s§n20=1 =20=7 or® =7 (Notethat A" () =Owhen 0 =7)

Therefore the critical number is%. The area A(ﬁ) =2

Note : The dimensions of the largest rectangle that can be inscribed in a

semicircle are~[2r é

Aliter : A'(0) = 2r%c0s20 =0= 20 =5 ; 0 =

Nla
ENE

2

A"(0) =-4< sin206 <0, for9=%:>9=% gives the

maximum point and the maximum point is (% , rz)

From the above problem, we understand that the method of calculus gives
the solution faster than the algebraic method.
Example5.55: The top and bottom margins of a poster are each 6 cms and the
side margins are each 4 cms. If the area of the printed material on the poster is

fixed at 384 cms?, find the dimension of the poster with the smallest area.
Solution : Let x and y be the length and breadth of printed area, then the area
xy = 384
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Dimensions of the poster area are ¥ +8

(x+8) and (y + 12) respectively. T 6 cms
Poster area A= (x + 8) (Y + 12) x
= xy +12x + 8y + 96 4 y 4y +12
= 12x + 8y + 480
= 12x+8(%)+480 | 6 cms
Fig. 5.41

A=12-8x384x"5
X

A"=16><384xx—13

A =0=>x=+t16
Butx>0
S Xx=16
when x =16, A" >0
. when x = 16, the areais minimum
Ly=24
LX+8=24,y+12=36
Hence the dimensions are 24cm and 36 cm.
Example 5.56 : Show that the volume of the largest right circular cone that can

beinscribed in a sphere of radius a isz;g7 (volume of the sphere).

Solution : Given that a is the radius of
the sphere and | et x be the base radius of
the cone. If h is the height of the cone,
then itsvolume is

1
\/ =3 X2 h

=%nx2(a+y) (1)
where OC =y sothat height h=a+y.
From the diagram X2+ y2 =a 2
Using (2) in (1) we have

V=5n@-y?) @+y)
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For the volume to be maximum :
1
V'=0 = 3n[a®—2ay—3y] = 0
= 3y=+aory=-a

= y=% andy = —aisnot possible
2 a
Now V” =—n§(a+3y) <O0ay=3

. . a . .
*. thevolumeis maximum wheny = 3 and the maximum volumeis

2
%n X 8% (a+%a) = 2—87 (% na3) = 2% (volume of the sphere)

Example 5.57 : A closed (cuboid) box with a square base is to have a volume
of 2000 c.c. The material for the top and bottom of the box is to cost Rs. 3 per
sguare cm. and the material for the sidesisto cost Rs. 1.50 per square cm. If the
cost of the materialsisto be the least, find the dimensions of the box.

Solution : Let x, y respectively denote the length of the side of the square base
and depth of the box. Let C be the cost of the materia
2

Area of the bottom = x
Areaof thetop = X
Combined area of the top and bottom = 2
Areaof the four sides= 4xy
Cost of the material for the top and bottom = 3(2x2)
Cost of the material for the sides= (1.5) (4xy) = 6xy

Total cost C= 6x° + 6xy ...()
Volume of the box V = (area) (depth) = x%y=2000 ...(2)
Eliminatingy from (1) & (2) weget C(x) = 6x° + 12200 ...(3)
wherex >0, ie., x € (0,+ ) and C(x) is continuous on (0, + ).
12000

C'(x)= 12x - 2

C'(x) =0= 12-12000 = 0 = 12(x>-10% =0
= x =10 or x>+ 10x+100=0
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2+ 10x + 100 = 0 isnot possible

‘. Thecritical numbersisx = 10.

24000 24000
Now C"(x) =12 + ;. C"(10)=12+ =36>0
®) % (10) 1000

o Cisminimum at (10,C(10)) = (10, 1800) .. the base length is 10cm and
. 2000
depthisy = 700 = 20cm.

Example 5.58 ;

A manisat apoint P on abank of astraight river, 3 km wide, and wants to
reach point Q, 8 km downstream on the opposite bank, as quickly as possible.
He could row his boat directly across the river to point R and then run to Q, or
he could row directly to Q, or he could row to some point S between Q and R
and then runto Q. If hecanrow at 6 km/h and run at 8 km/h where should he
land to reach Q as soon as possible ?

Solution :
Let x be the distance from R to S Then the
running distance is 8 — x and the distance

PS=1/x2+9. Weknow that time :dlftTare]ce.

Then the rowing time

_Abe+9 (8%

R=""5 and therunning timery = ~—g

Fig. 5.43

A2 +9 CEN

Thereforethetotal time T=R; +r; = 6 g » 0<x<8

Noticethat if x=0, herows to Rand if x=8 herowsdirectly to Q.

X 1
T'X)=0= T'(X) =—F7==——= —¢ = Ofor critica points.
6\x2+9 8

4x = 31X +9
16x* = 9 ( + 9)
7x° = 81
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9 9. .
= x-\/—7 sncex-—\/—7|snotadm|sable.

The only critical number isx = % . Wecalculate T at the end point of the

domain0and 8 and at —\/—7

T(0) = 15, T(\ﬁ) 38£z133 and T(8) = @zlAZ

Since the smallest of these values of T occurs when x = \% , the man

should land the boat at a point % km (~ 3.4 km) down stream from his starting

point.

(D
)

©)
(4)
()

(6)

EXERCISE 5.10
Find two numbers whose sum is 100 and whose product is a maximum.

Find two positive numbers whose product is 100 and whose sum is
minimum.

Show that of all the rectangles with a given area the one with smallest
perimeter is asquare.

Show that of al the rectangles with a given perimeter the one with the
greatest areais a square.

Find the dimensions of the rectangle of largest area that can be
inscribed in acircle of radiusr.

. . . S 5
Resistance to motion, F, of amoving vehicleisgiven by, F = % T 100x.

Determine the minimum value of resistance.

5.11 Concavity (convexity) and points of inflection :

Figure 5.44 (a), (b) shows the graphs of two increasing functions on [a, b].
Both graphs join point A to point B but they look different because they bend in
different directions. How can we distinguish between these two types of
behaviour? In fig. 5.44 (c), (d) tangents to these curves have been drawn at
severa points. In (a) the curve lies above the tangents and f is called concave
upward (convex downward) on [a, b]. In (b) the curve lies below the tangents
and g is called concave downward (convex upward) on [a, b]
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Sl==—=—=====

v
=
o=

0 a 0 . > X

Fig. 5.44 (a) y Fig. 5.44 (b)

A B A B

A
| - A | -

0 » X 0 » X

Fig. 5.44(c) Fig. 5.44 (d)

Definition :

If the graph of f lies above al of its tangents on an interva |, then it is
called concave upward (convex downward) on I. If the graph of f lies below all
of itstangentson |, it is called concave downward (convex upward) on |.

Let us see how the second derivative helps to determine the intervals of
concavity (convexity). Looking at Fig.5.44(c), you can see that, going from left
to right, the slope of the tangent increases. This means that the derivative f '(X)
is an increasing function and therefore its derivative f "'(X) is positive. Likewise
in Fig.5.44 (d) the slope of the tangent decreases from left to right, so f '(X)
decreases and therefore f "'(X) is negative. This reasoning can be reversed and
suggests that the following theorem is true.

Thetest for concavity (convexity) :
Suppose f istwice differentiable on an interval |.

(i) Iff""(x) >0 for al xin I, then the graph of f is concave upward
(convex downward) on I.

(i) 1f f'(xX) < O for al x in I, then the graph of f is concave downward
(convex upward) on I.
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Definition : A point P on a curve is called a point of inflection if the curve
changes from concave upward (convex downward) to concave downward
(convex upward) or from concave downward (convex upward) to concave
upward (convex downward) at P.

That is the point that separates the convex part of a continuous curve from
the concave part is called the point of inflection of the curve.

It is obvious that at the point of inflection the tangent line, if it exists, cuts
the curve, because on one side the curve lies under the tangent and on the other
side, above it. The following theorem says under what situation a critical point
of f becomes a point of inflection.

Theorem :

Let a curve be defined by an equation y = f(x). If f "(xg) = 0 or
f ""(Xg) does not exist and if the derivative f ''(x) changes sign when passing
through x = Xg, then the point of the curve with abcissa x = xg is the point of
inflection. Equivalently the point (X, f(Xg)) is a point of inflection of the graph
of f if there exists a neighbourhood (a, b) of x; such that
f"(X) > 0 for every xin (a, xg) and f ""(x) < O for every xin (xg, b) or vice versa
Thatys in the neighbourhgod of X, f ”'(a) and'f "' (b) differ in signy

> > X > X

ol o0l ol ol

Fig. 5.45

Remark :

We caution the reader that points of inflections need not be critical points
and critical points need not be points of inflections. However x = X, is a critical

point such that f '(x) does not change its sign as f(x) passes through Xg, then
Xg is a point of inflection and for points of inflections Xg, it is necessary that
f""(xg) = 0. If f"'(X) does not change its sign even if f "’ (xg) = 0 then X, cannot be

apoint of inflection. Thus the conjoint of the above discussion is that for points
of inflections xg, f "' (Xg) = 0 and in the immediate neighbourhood (a, b) of X, f

""(a) and f "'(b) must differ in sign.

62



If X = X5 is a root of odd order — simple, triple, etc. of the function

f'(X) = 0, then x = X yields a maximum or minimum. If X = Xy isaroot of even

order, X = Xg yield a point of inflection with a horizontal tangent. These

concepts are made clear in the following illustrative exampley = .

y = 3% andy'’ =6x.

Herey'(0) = 0 and y'"'(0) = 0 and x = 0 happens to be acritical point of both
yand y'. Clearly y' (xX) >0 for x <0 and x > 0. Thusy’ does not change its sign
as f(x) passes through x = 0.

Thatisy (- 0.1) >0and y'(0.1) > 0i.e, in the neighbourhood (— 0.1, 0.1)
of 0, y' does not change its sign. Thus the first derivative test confirms that
(0, 0) isapoint of inflection.

Agany’'(0) =0, y'(-01) <0 y

—y3

and y'(0.1) > 0. Here y'" changes its T
sign as y(x) passes through x = 0. In COﬂcaIXe
this case the second derivative v X Convex
(concavity) test also confirms that (0, downward
0) isapoint of inflection. Note that (O, 0 > X
0) separates the convex part of y = x° ngﬁé‘
from the concave part.

Note aso that y'(x) = 3x° and L coneae
x = 0isadoubleroot of y'(x) = 0. The downward
root order test also confirms that (0, 0)
is a point of inflection with x-axis as ]
the horizontal tangent at (0, 0) Fig. 5.46

Example 5.59 :

Determine the domain of concavity (convexity) of the curve
y=2- .
Solution : y=2—x2

y =—-2xandy’"=-2<0 forxe R

Here the curve is everywhere concave downwards (convex upwards).
Example 5.60 :

Determine the domain of convexity of the functiony = €*.
Solution : y=¢€";y"'=¢&>0forx

Hence the curve is everywhere convex downward.
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Example 5.61 : Test the curvey = ¢ y
for points of inflection. 4

Solution : y = x*

y' = 12x>=0forx=0

andy’ >0forx<0Oandx>0
Therefore the curve is concave
upward and y"' does not change sign
as y(X) passes through x = 0. Thus the

curve does not admit any point of
inflection. Fig. 5.47

Note: The curveis concave upward in (— oo, 0) and (0, ).

Example 5.62 : Determine where the curvey = xC - 3x + 1is cancave upward,
and where it is concave downward. Also find the inflection points.

Solution :
f) = 33— 3x+ 1 o x =0 >
f/(x) = 3x°—3=3(x*— 1)

v

Fig. 5.48
Now f"'(x) = 6x
Thusf''(x) >0whenx>0and f"(x) < Owhen x<0.
The test for concavity then tells us that the curve is concave downward on
(= o0, 0) and concave upward on (0, «). Since the curve changes from concave
downward to concave upward when x = 0, the point (0, f(0)) i.e., (0, 1) isa
point of inflection. Notethat f''(0) =0
Example 5.63:
Discuss the curve y = x* — 4x3 with respect to concavity and points of
inflection.
Solution :
i) = xt - a3 = /() = 43 - 12¢
f7(x) = 12 — 24x = 12x (X — 2)
Sincef""(x) =0whenx=0 ) )
or 2, we divide the readl line into — 0 2 o
three intervals.

v

Fig. 5.49
(-0, 0), (0, 2), (2, ©) and complete the following chart.

64



Inerval f"(x)=12x(x-2) concavity

(= o0, 0) + upward
©, 2 - downward
(2, ©) + upward

The point (0, f(0)) i.e., (0, 0) is an inflection point since the curve changes
from concave upward to concave downward there. Also (2, f(2)) i.e., (2, — 16) is
an inflection point since the curve changes from concave downward to concave
upward there.

Note : The intervals of concavity can be obtained by taking and checking a
sample point in the sub-interval.

Example 5.64 : Find the points of inflection and determine the intervals of
. . . %2
convexity and concavity of the Gaussion curvey = ¢
2
Solution:y' =—2x¢* ;y"’ = 26 (22 - 1)

(The first and second derivatives exist everywhere). Find the values of x
for whichy’ =0

2
267 (2% -1)=0 =

. 1 orx—i -0 12 0 112
IRVFA RVE:

8v

Fig. 5.50

Whenx<—\%wehavey” >0andwhenx>—%wehavey” <0

The second derivative changes sign from positive to negative when passing

. 1 1 . . . .
through the point x = — \/——2 . Hence, for x = — \/——2 , there is a point of inflection
1 1
. o 1 -3
on the curve; its co-ordinates are( \/—2 e j

Whenx<%wehavey”< Oandwhenx>%wehavey”>0.Thus

. . . . 1 . .
there is aso a point of inflection on the curve for x = \E ; its co-ordinates are

1
(\% , e 2). (Incidentally, the existence of the second point of inflection follows

directly from the symmetry of the curve about the y-axis). Also from the signs
of the second derivatives, it follows that
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1 .
for —o<x<- \/——2 the curve is concave upward ;
for L <X< L the curve is convex upward ;
NFRRRNF: pward;

for L <Xx<ow thecurveisconcave upward
V2 e
Example 5.65:

Determine the points of inflection if any, of the function
y= X — 3x + 2

Solution : y = X — 3x + 2
%ﬁ: 3% -3=3(x+1) (x— 1)
d—zy- 6x=0 = x=0
dx®
dy
Now (-0.1) =6(-0.1) <0and

dx?

oy

o2 (0.1) = 6(0.1) > 0. In the neighbourhood (- 0.1, 0.1)

of 0, y' (- 0.1) and y'(0.1) are of opposite signs. Therefore (0, y (0)) i.e,
(0, 2) isapoint of inflection.

Note: Notethat x=0isnot acritical point sincey’ (0) =—3=0.

Example 5.66 :
Test for points of inflection of the curvey = sinx, x € (0, 2r)
Solution : y' = cosx
y'=—dnx=0=x=nm,n=0,%1,+ 2, ...

since x (0, 2r), x = = corresponding to n = 1.
Now y"’ (.91) = —sin (.9n) <0 and
y'(1.1n) = —sin (1.1 n) > 0since sin (1.1x) is negative
The second derivative test confirms that (r, f(n)) = (rr, 0) is a point of
inflection.
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Note : Note that x = = is not a stationary point since y'(r) =cosn = -1 = 0.
In fact y = sin x admits countable number of points of inflections in the range
(= o0, ), each of whichisgiven by (nm, 0), n=0, + 1, 2, ... and in none of the
cases, y'(nr) = (- 1)" vanishes. This shows that points of inflections need not be
stationary points.

EXERCISE 5.11

Find the intervals of concavity and the points of inflection of the following
functions:

D )= x-1"3

2 () = ¥ -x

(B) () = 2 +5° - 4x

@ ) = x*-6x°

(5) f(6) = sin20in (0, )

® vy = 12¢% - 23 - x*
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Testing a differentiable function for maximum and minimum with a first

derivative

This gives us the following diagram of possible cases.

Signs of derivative f '(X) when passing through

critical point xg

Character of critical
point

X<Xg X=Xg X>Xg
+ f'(xg)=0oris - Maximum point
discontinuous
- f'(xg) =0oris + Minimum point
discontinuous
+ f'(xg) =0oris + Neither maximum nor

discontinuous

minimum (function
increases). But is a point
of inflection.

- f'(xg) =0oris
discontinuous

Neither maximum nor
minimum (function
decreases) But is a point
of inflection.

Second derivative test

This gives us the following diagram of possible cases.

) I . . . , Character of
Signs of derivativef''(x) at the critical point of f(x) or f '(X) the point
X=Xg
f'(x0) f"(x0)
Critical point | Maximum
0 - .
of f point
Critical point | Minimum
0 + .
of f point
X<Xo f"(xo) X>Xo
' Oor0 0 - Point of
Inflection
- Oor0 0 + Point of
inflection
+ Oor=0 0 + Unknown
- Oor=0 0 — Unknown
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6. DIFFERENTIAL CALCULUS
APPLICATIONS|

6.1 Differentials: Errorsand Approximation

We have used the Liebnitz notation % to denote the derivative of

y with respect to x but we have regarded it as a single entity and not as aratio.
In this section we give the quantities dy and dx separate meanings in such away
that their ratio is equal to the derivative. We a so see that these quantities, called
differentials, are useful in finding the approximate values of functions.
Definition 1 : Let y = f(X) be a differentiable function. Then the quantities
dx and dy are called differentials. The differentia dx is an independent variable
that is dx can be given any real number as the value. The differential dy is then
defined in terms of dx by the relation

dy = f'(X) dx (dx =~ AX)
Note:

(1) Thedifferentials dx and dy are both variables, but dx is an independent
variable, where as dy is a dependent variable — it depends on the
values of x and dx. If dx is given a specific value and x is taken to be
some specific number in the domain of f, then the numerical value of
dy is determined.

(2) If dx = 0 we can divide both sides of dy = f '(x) dx by dx to obtain

% =f'(x). Thus% now istheratio of differentials.

Example6.1: Ify= C+ 2%° ()find dy
(i) find the value of dywhenx=2 and dx=0.1
Solution :

(i) 1 f(x) = X3+ 22, then f'(x) = 3x% + 4x, s0 dy = (3% + 4X) dx
(i) Substituting x =2 and dx = 0.1, weget dy = (3x 22+ 4x 2)0.1 = 2.
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6.1.1 Geometric meaning of differentials:
Let P(x,f(X)) and Q(x + Ax, f(x +AX)) be
points on the graph of f and set
dx = Ax. The corresponding change iny is
Ay = f(x+ AX) — f(X)
The dope of the tangent line PR is the
derivate f '(x). Thus the directed distance
fromSto Risf’(x) dx = dy.

Therefore dy represents the amount that the tangent line rises or falls
whereas Ay represents the amount that the curve y = f(x) rises or falls when x
changes by an amount dx.

dy lim Ay

SincedX = we have Ay

AX—>0  AX' Ax dx

Geometrialy, this says that the slope of the secant line PQ is very close to
the slope of the tangent line at P when Ax issmall. If we take dx = Ax, then (1)
becomes Ay ~ dy ....(2) which saysthat if Axissmall, then the actual change
iny is approximately equal to the differential dy. Again this is geometrically
evident in the case illustrated by Fig. 6.1. The actual changeiny isreferred as
absoluteerror.

The actual error iny is Ay = dy.

A h iny. .
éyy = Acgjuala'(;\/;z%eolfnyy|scalled relative error and the

....(1) when Ax issmall.

The quantity

quantity (éyy> x 100 iscalled percentageerror.

The approximation given by (2) can be used in computing approximate
values of functions. Suppose that f(a) is a known number and an approximate
value is calculated for f(a + AX) where dx is small, since f(a + AX) = f(a) + Ay,
(2) gives, f(a+ Ax) ~ f(a) + dy....(3)

Example 6.2 : Compute the values of Ay and dy if y=f(X) = CHxe—2x+1
where x changes (i) from 2o 2.05 and (ii) from 2to 2.01
Solution :

(i) Wehave f(2) =23+2°-2(2)+1 =9
f(2.05) = (2.05)% + (2.05)% - 2(2.05) + 1 = 9.717625.
and Ay =f(2.05) —f(2) =0.717625.
Ingeneral  dy =f'(x) dx = (3x° + 2x — 2)dx
When x =2, dx =Ax =0.05anddy = [(3(2)2+2(2)—2] 0.05=0.7
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(ii) f(2.01) = (2.01)%- (2.01)? - 2(2.01) + 1 = 9.140701
. Ay = (2.01) — f(2) = 0.140701
When dx = Ax=0.01, dy=[3(2)%+ 2(2) —2]0.01=0.14
Remark : The approximation Ay ~ dy becomes better as Ax becomes smaller
in Example 6.2. Also dy was easier than to compute Ay. For more complicated

functions it may be impossible to compute Ay exactly. In such cases the
approximation by differentialsis especially useful.

Example 6.3 : Use differentials to find an approximate value for %/@5
1 =2
Solution : Let y=f(X) = %/3( =x23 Then dy:%x.3 dx

Sincef(64) = 4. Wetake x=64 anddx=Ax=1

. 1, .3 1 1
Thisgives dy =3 (64) 3 = 3(16) = 48

3 1
. /65 =f(64+1)~f(64) +dy = 4+75 ~ 4.021

Note : The actual vaue of ?\’/6_5 is 4.0207257... Thus the approximation by
differentialsis accurate to three decimal places even when Ax =1.

Example 6.4 : The radius of a sphere was measured and found to be 21 cm with
apossible error in measurement of atmost 0.05 cm. What is the maximum error
in using this value of the radius to compute the volume of the sphere ?

Solution : If the radius of the sphere isr, then its volume is V = %n r3. If the
error in the measured value of r is denoted by dr = Ar, then, the corresponding

error in the calculated value of V is AV. which can be approximated by the
differential dV = 4xr? dr.

When r = 21 and dr=0.05, this becomes dV = 47t(21)2 0.05~ 277.

The maximum error in the calculated volume is about 277 cm®.
Note : Although the possible error in the above example may appear to be
rather large, a better picture of the error is given by the relative error, which is
computed by dividing the error by the total volume.

AV dv 27T

vV *V zm ~ 0.00714
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dr 0.05

Thus a relative error of - =57~ ~ 0.0024 in the radius produces a

relative error of about 0.007 in the volume. The errors could aso be expressed
as percentage errors of 0.24% in the radius and 0.7% in the volume.

Example 6.5 : Thetime of swing T of apendulumisgivenby T =kl wherek
is a constant. Determine the percentage error in the time of swing if the length
of the pendulum | changes from 32.1 cm t032.0 cm.

Solution : T =kl = kI2

1
ar _ 1L 2|k - _
Then g = k(z x | )—(2\/1 )and d=320-321=-0.1cm

Errorin T = Approximate changein T.

AT ~dT = (dT) di = (\[ ) (-0.1)

k
Percentage error = (ﬂ) 100 % = M 100 %
@ “\T X 0 — k’\/—l X 0
= (—‘%‘1) x 100 % = (2(_302'.11)) x 100%
= —0.156%
Hence the percentage error in the time of swing is a decrease of 0.156%.
Aliter : T =kl
Taking log on both sides, logT = log k+ log |
Taking differential on both sides, % dT = O+% Tl x dl
AT 11
|e,T ~TdT—O+2| Xdl
% x 100 = % x% x 100
= 2 %) x 100
= - 0.156%

ie., the percentage error in the time of swing is a decrease of 0.156.

Caution : Differentiation is carried out with the common understanding that the
function involved admit logarithmic differentiation.
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Example 6.6 : A circular template has a radius of 10 cm (x 0.02). Determine the
possible error in calculating the area of the templates. Find also the percentage
error.

. . dA .
Solution : Areaof circular template A = r?, hencea = 2nr, Approximate

changeinarea AA ~ (2rr)dr. When r =10 cmand dr = 0.02
AA = (21 10) (0.02) ~ 0.4xn cn? g, the possible error in calculating the
template areais approximately 1.257 cm?

0.4
Percentage errorz( nz) x 100 = 0.4%
7(10)

Example 6.7 : Show that the percentage error in the n™ root of a number is

. 1. .
approximately n times the percentage error in the number .
1

Solution : Let x bethenumber. Let y = f(X) = (X) 5
Thenlogy = % log x

Taking differential on both sides, Wehave%dy:%x)% dx
oAy 10 101
i.e, y ~ydy—n e dx
Y 1 (dx )
Yy x 100 ~ | (5 x 100
1. .
=, times the percentage error in the number.

Example 6.8 : Find the approximate change in the volume V of a cube of side x
meters caused by increasing the side by 1%
Solution : The volume of the cube of sidex is,
V=x : dV = 32 dx
Whendx = 0.01x, dV =3x°x (0.01x) = 0.03x° nr".

EXERCISE 6.1
(1) Find thedifferential of the functions
i)y =x° (i) y = ‘\‘/& (i) y = \x*+x@+1
. X=2 . .
(V) Yy =273 (v) y=sn2x (vi)y = x tanx
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(2) Findthedifferential dy and evaluate dy for the given values of x and dx.

i y =1-%, x=5,dx=%
(i) y = x*-33+x-1,x=2,dx=0.1.
iy y = 0@+5)3 x=1, dx=005
(iv) y = \/E( x=0, dx=0.02
V) y = cosx,x=% dx =0.05
(3) Usedifferentialsto find an approximate value for the given number
() V361 (i) 101
(i) y = 3102 +31.02 (iv) (197)°

(4) The edge of a cube was found to be 30 cm with a possible error in
measurement of 0.1 cm. Use differentials to estimate the maximum
possible error in computing (i) the volume of the cube and (ii)

surface area of cube.

(5) Theradius of acircular disc is given as 24 cm with a maximum error in

measurement of 0.02 cm.

(i) Use differentials to estimate the maximum error in the calculated

area of the disc.

(ii) Compute the relative error ?

6.2 CurveTracing:

The study of calculus and its applications is best understood when it is
studied through the geometrical representation of the functions involved. In
order to investigate the nature of a function (graph) it is not possible to locate
each and every point of the graph. But we can sketch the graph of the function
and know its nature by certain specific properties and some special points. To

do this we adopt the following strategies.

(1) Domain, Extent, Interceptsand origin :

(i) Domain of a function y = f(x) is determined by the values of x for

which the function is defined.
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(ii) Horizontal (vertical) extent of the curve is determined by the intervals
of x (y) for which the curve exists.

(iii) x=0yieldsthey — intercept and y = 0 yields the x — intercept

(iv) If (0,0) satisfies the given equation then the curve will pass through
the origin.

(2) Symmetry : Find out whether the curve is symmetrical about any line with
the help of the following rules::

The curveis symmetrical about
(i) thex-axis if itsequation isunaltered when y isreplaced by — y
(ii) they-axisif its equation is unatered when x is replaced by — x.
(i) the origin if it is unaltered when x is replaced by — x and y is replaced
by — y ssimultaneously.
(iv) theliney = xif itsequation is unchanged when x and y are replaced by
y and X.
(v) theliney= - xif its equation is unchanged when x and y are replaced
by —yand — x.
(3) Asymptotes (parallel to the co-ordinate axes only) :
If y— ¢, cfinite[x —> k, kfinite] whenever x - + w [y —» + ] then the
liney= c[x=K] isan asymptote parallel to x — axis[y —axis].
(4) Monotonicity : Determine the intervals of x for which the curve is
decreasing or increasing using the first derivates test.
(5) Special points (Nature of bending) :
Determine the intervals of concavity and inflection points using the first
and second derivatives test.
[llustrative Example:

Example 6.9 : Tracethe curve y = 1
Solution :
(1) Domain, Extent, interceptsand origin :

The function is defined for all real values of x and hence the domain is the
entire interval (—oo, o). Horizontal extent is —co < X < oo and vertical extent is
—o<y<ow, Clearly x=0 yieldsthey intercept as+ 1 andy =0 yieldsthe
X intercepts as—1. It is obvious that the curve does not pass through (0,0).
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)
©)
(4)

()

astheinflection point

Symmetry Test : The symmetry test shows that the curve does not possess
any of the symmetry properties.

Asymptotes: Asx — c (for cfinite) y does not tend to + « and vice versa.
Therefore the curve doest not admit any asymptote.

Monotonicity : The first derivative test shows that the curve is increasing
throughout (—o0,00) sincey’ >0 for all x.

Special points : The curve is a
concave downward in (-, 0) and
concave upward in (0, o) since

8
6

y'"=6x<0 forx<0 4
y'=6x>0 forx>0 and 2
/1

2

y' =0 for x = 0 yidlds (0,1)

Example 6.10 : Trace the curey2 =23,
Solution :

D

2
©)

(4)

Domain, extent, Intercept and Origin :
When x> 0, y iswell defined. ASX — o0,y — £ o0,
The curve existsin first and fourth quadrant only
The intercepts with the axes are given by :
x=0, y=0 andwhen y=0, x =0
Clearly the curve passes through origin.
Symmetry : By symmetry test, we have, the curve is symmetric about
x—axisonly.
Asymptotes: As X — + 00,y — + o0, and vice versa.
.. the curve does not admit asymptotes.

32

Monotonicity : For the branch y =/2 x
% >0 for x>0 and the branchy = — \/_Zx?’/2 of the curve is decreasing

since%%<0forx>0

of the curve isincreasing since
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(5) Special points: (0,0) isnot apoint of inflection.

p<

This curve is called a semi — cubical
parabola.
Note:
(0, 0) admits a pair of tangents 0,0
which coincide, resulting in a specia
point, called cusp.

Fig. 6.3
Example6.11: Discussthe curve y2 (1+x) = X2 1-x)
for (i) existence (ii) symmetry (iii) asymptotes (iv) loops
Solution :

(i) Existence: The function is not well defined when x >1 and x < -1 and the
curve liesbetween -1 <x<1.

(i) Symmetry : The curve is symmetrical about the x — axis only.
(iii) Asymptotes : x = -1 is a vertical asymptote to the curve parallel to
y — axis.

(iv) Loops: (0,0) isapoint through which the curve passes twice and hence a
loop isformed betweenx=0and x = 1.

A

x =-1

0,0

> x
(1,0

(-1,0)

Fig. 6.4

Example 6.12 : Discussthe curve a° y2 =% (a2 - x2), a>0

for (i) existence (ii) symmetry (iii) asymptotes (iv) loops
Solution :
(i) Existence:

The curveiswell defined for (az— xz) >0ie,x<a’ie,x<aandx>-a
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(i) Symmetry : The curve is symmetrical about x-axis, y — axis, and hence
about the origin.

(iii) Asymptotes: It has no asymptote.

(iv) Loops: For —a < x<0 and 0<x < a, y2>0 = Yy is positive and
negative .. aloop isformed between x =0 and x =a and another loop is
formed between x=-a and x=0.

y

(0.0, >

Fig. 6.5

Example 6.13 : Discussthe curve y2 = (x-1) (x— 2)2.
for (i) existence (ii) symmetry (iii) asymptotes (iv) loops

Solution :
(i) Existence :

The curve is not defined for x — 1 <0, ie., whenever x < 1, the RH.S. is
negative = y2 < 0 which isimpossible. The curve is defined for x > 1.
(ii) Symmetry : The curveis symmetrical about x-axis.
(iii) Asymptote: The curve does not admit asymptotes.
(iv) Loops: Clearly aloop isformed between (1, 0) and (2, 0).

y
A
2
1
0 3
Fig. 6.6
EXERCISE 6.2
(1) Tracethecurve y = X
Discuss the following curves for (i) existence (i) symmetry
(iii) asymptotes  (iv) loops
@ ¥ =32 (1-x) @Y @+x) = (6-%)
@ vy =x (1-% (B)y’=(x-a) (x-b)* ; a,b >0, a>b.
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6.3 Partial Differentiation :

A nation’s economy (E) depends on many factors. An yield (Y) of a crop
also depends on various factors such as rain, soil, manure etc., Similarly the
character (C) of achild isformed by its parent’s characters, environment etc., In
plane geometry, area (A) and volume (V) aso depend on the dimensions like
length, breadth and height. In all the above cases either economy or yield or
character or area or volume depends on more than one variable (factor). If any
small change is effected in any of the variables (factors), it becomes necessary
to know what changes will be caused in the respective dependent variable E or
Y or C or A or V. These small changes can take place in all the variables
(independent) simultaneously or in some of them while others are not subjected
to any change. The study of these changes in the dependent variable while a
corresponding change is made in one or more of the independent variables,
keeping the remaining independent variables fixed leads to what is known as
partia differentiation.

For clarity, let us consider the h g_
area (A) of a rectangle of length x Axdy i ¢
and breadthy. Then A =xy = f(x,y). d o
Note that ‘A’ depends on two x A !
independent variablesx and y. a bl__e

A =xy = area of abcd Y ?y

Fig. 6.7

Suppose a small changeismadeinyie, y + Ay instead of y, then the new
area A’ = x(y + Ay). Note that x is fixed till there is change in the area A.
Similarly, if we interchange roles of x and y in the above we get
new areaabgh = A" = (x + AX)y.

Note that change in both x and y will also cause change in area A. In this
casethe areais (X +AX) (y + Ay) = areaof aeih.

But we shall restrict ourselves to the discussion of the change in one
variable fixing the rest. We may consider functions of two or three independent
variables only.

We can aso discuss the continuity problems and the limit process for
functions depending on more than one variable similar to that of their
counterpart in single variable differential calculus.
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Partial Derivatives:

Let (xo,yo) be any point in the domain of definition of f(x,y). Let u = f(x, y)
We define partial derivative of u with respect to x at the point (Xo'yo) as the
ordinary derivative of f(x,yo) with respect to x at the point x = x.

. du } d
ie, — = ¢ f(xYo)
- f(xg + h, yp) — f(Xo,
_ hlino (X0 y%) (o0 , (denoted by f, or u, at (X, Yo))

provided the limit exists.
Similarly, partial derivatives of u = f(x,y) with respect to y at the point
(Xo.Yo) is

au

d
=5 fx0y)
ay}(xo,)/o) dy 10 JVZYO

_lim  fxo Yo+ h) —f(x0.Y0)
“h->0 h

(denoted by f, or uy at (xo, o))

provided the limit exists.

A function is said to be differentiable at a point (at all points on adomain)
if its partial derivatives exist at that point (at al points of a domain). The
process of finding partial derivativesis called partial differentiation.

Remark :

Throughout we shall consider only continuous functions of two or three
variables possessing continuous first order partial derivatives.
Second Order Partial Derivatives : When we differentiate a function
u =f(xy) twice we obtain its second order derivatives, defined by,

B0 (@) 20 B g
oxoy _ox \dy) ~ ay\ox) ayox cenotedrespectively

X
as iy Or Uy, fyy Or Uy andfyy, = fy, or uyy = uyy

Note that since the function and its partial derivaties are continuous the
order of differentiation isimmaterial (A result dueto Euler)
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Chain rule (function of a function rule) of two variables:

If u=1f(xy) is differentiable and
x and y are differentiable functions of
t, then u is a differentiable function
of tand

du _of dx

of dy
dt ox dt "oy dt

Tree diagram to remember the
chainrule: (2 variables)

u =1 (x,y) dependent variable

ou | ox ou | 0y
X y
dx / dt dy /dt

t independent variable
Fig. 6.8

Chain rule (function of a function rule) of three variables:

If u="f(xy, 2 is differentiable
and x, y, z are differentiable functions

of t, then u is a differentiable
function of t and
du _of dx  of dy  of dz

dt “ox dt T oy dt "oz ot

Tree diagram to remember the
chainrule: (3 —variables)

Chain rulefor partial derivatives:
If w="f(uv),u = gxy),

W _owu  ow v
OX ~ ou ox ov ox

u dependent variable

t independent variable

Fig. 6.9

; v=h(xy) then
. oW _ow au

Y
oy ou oy ov oy

w =f,v) w =1 (u,v)
ow [ ou ow /[ ov ow [ ou ow [ ov
u v u v
oulox ov/ox ou | oy ov /oy

* Fig. 6.10
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Homogeneous functions:

A function of several variables is said to be homogeneous of degree n if
multiplying each variables by t (where t > 0) has the same effect as multiplying

the origina function by t". Thus, f(xy) is homogeneous of degree
nif f(tx, ty) = t" f(xy)
Euler’sTheorem :

If f(x,y) isahomogeneous function of degreen, then xg—)f( + y% =nf

Remark : Euler’stheorem can be extended to several variables.
u oy S
X' oy’ ox?’ oy’ Ox oy Oyox
it uxy) =x*+y3 + 3V + 3y

Example 6.14 : Determine:

Solution : % =4x3+6><y2 +6xy;g—;=3y2 +6x2y + 3%
62u 2 52U
5 =12 + 6y +6y ; —5 =6y +6X
P )'2 y 8y2 y
d%u . 2%u _
axay_12Xy+6X’ ayax-12xy + 6X
Notethat 2% = U e 1o continuity of u and its first order partial
ote oxoy ~ dyox ue to continuity of u and its first order parti
derivatives.
Example 6.15: If u=log (tan x + tany + tan z), prove that Y sin 2x % =2
2
L ou _ SEC™X
Solution : ox = tanx + tany + tanz
. ZX@ _25inxcosx.sec2x_ 2tan x
sn ox ~tanx+tany+tanz “tanx+tany+tanz
imilarly. sin 2 ou _ 2tany
Slmlal'y, sn yay _tanx+tany+tanz
in 2 ou _ 2tanz
Snéza, T tanx+tany+tanz

LHS =Y gnx - 2anxttanyttang _ ., _ oo

ox ~  tanx+tany+tanz
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Example 6.16:
If U=(x-y)(y-2 (z—X) then show that U, + U, +U,=0
Solution : Ue=(y-2{(x-y) (- 1+ (z-x.1}
= (-2 [(z-%-(Kx-y]
Similarly Uy = (z—=x) [(x-y) — (y - 2]
U, = x=y)[ly-2 - (z-x]
Uyt Uy+ U= (Y- [(z-%) - (z-X] + X=-y)[-(y-2 +(y-2)]

+ (2-X) [(x-y) - (x=Y)]
=0
X . dz
Example 6.17 : Supposethat z=ye where x=2tandy=1-t thenfind 5

. dz _oz dx oz dy
Solution : at = ox dt +8y dt
oz _ X, oz_ X dx_ dy_
ox - Ve 2x ay—e - =2; dt——l
dz NG X2
T CYXE (9 +e€ (-1
2 2 2 2
=axye - = [t (1-)-1] =6 (8t-82-1)
(Sncex=2tandy=1-1)

Example6.18: If w=u?e’ whereu =X and v=ylo xfinda—w anda—W
p . . - _y _y g’ aX 6y
- W _OwWou ow v W WU ow v

Solution : We know oX ~ou ox T ov ox  and oy ~ ou oy Tov oy

8_W_ v. oW _ 2V

ou 2ue’ ; oy - ues

ou _1 ou_ =X

XY Toy Ty

N _Yy . N _

XXy T log x
.a_VV_2U€V 2vY_yX
S Ty + u%e (=X y2(2+y)
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v =X

'a—W—2ue + 1% log x
" oy y2 g

Y 1 :)—( =
y3x [ylogx—2], (sinceu yandv ylogXx)

Example6.19: If w=x+ 2y+z2 and x=cost;y=sgnt;z =t. Findcé—vtv

2

- _owdx ow dy  ow gz
Solution : Weknow "~ =75 g + ay dt * oz dt

=1;a = —sint

o
—
1
Q
(@]
72}
—

dt =1(-sint)+ 2cost+2z=-sint+2cost+2t

1
Example 6.20 : Verify Euler’ stheorem for f(x,y) = \/—2—
X2+ Y
1 -
=1 flxy) =t 1(x,y)

1
Solution : fitx, ty) = T7—7—7——="
5 + oy

-. fisahomogenous function of degree —1 and by Euler’ s theorem,

6f + a f
Xox Yoy T
Verification : fy = —% s 3, = = 3
@A) ()"
S|m|IarIy,f —L/z
(¢ +y)
X2+ y2 -1

Xf><+yfy=_(X er2)/2 \/mz

Hence Euler’ stheorem is verified.



Example 6.21 : If uisahomogenous function of x and y of degree n, prove that
X oy + y@ = (n—l)@
ox oy oy? oy
Solution : Since U is a homogeneous function in x and y of degree n, Uy is

homogeneous function in x and y of degreen— 1. Applying Euler’s theorem for
Uy we have,

XUy +Y (Uy)y = (1-1) U,
e, XUy +yUy = (n-1) U,
2, 22

i.e, X +y—>5 = n—1)@
S Xaxay T Y2 ay
ou ou 1 .
Example 6.22 : Using Euler's theorem, prove that x —_ +y—-—tanU|f
oX oy 2
el XY
H=sn (XWXJ

Solution: R.H.S. is not homogeneous and hence
. . XYy . 1
deflnef—smu—\/;ﬁ_\/— = fishomogeneous of degrees .

". By Euler’ stheorem, xa a—f-:—Lf

xVoy~2
i.e, Xx. —(smu)+yay(smu)-%smu

ou 1.
X—. cosu+y— cosu=5sinu

oX’ oy’
u, ou_1
Xox Yoy T2t
EXERCISE 6.3
.U _ d%u . L
(1) Verify oxdy - dyox for the following functions :
(i) u=x’+3y +y° (ii)u:é -
(iii) u=sin3x cos4y (iv) u :tan‘le).
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)

©)

4)

©®)

@i If u—\/x +y2 showthatx& +y—y:u
X

y

@ii) If u :eysin)—); +e cosy showthaIx— +ya— = 0.

Using chain rule find (L_vtv for each of the following :

(i) w = e where x=t°, y=t>

log (x* +y?) wherex=¢,, y=¢""

(i) w

i) w = X where x = cost, y= sint.
¢ +y?)

(iv) w =xy+z where x=cost, y =sint,z=t

) Fmd - and— ifw = Iog(x2+y2) wherex=r cos0,y=rsino
(i) Findg—vuv andaa—vvv if w :x2+y2 wherex = u? — V2, y =2uv

(iii) Findg—vuv andg—vvv if w=sinlxy wherex=u+v, y=u —v.

Using Euler’stheorem prove the following :

Kty

i) If u=tan‘1( —y )provethat x@ +y— = sin2u.

oy
au
(i) u= xyzsm(y) showthatx +y y = 3u.

(iii) If u is a homogeneous function of x and y of degree n, prove that
u u
2ty =(n 1)
OX ox oy aX

(iv) If V= ze®" by and z is a homogenous function of degree nin x and

oV oV
y provethat x x Ty 2y =(ax+by+n)V.
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7. INTEGRAL CALCULUSANDITS
APPLICATIONS

7.1. Introduction :

In class XI, we have studied the direct evaluation of definite integrals as
the limit of integral sums. Even when the integrands are very simple, direct
evaluation of definite integrals as the limit of integra sum involves great
difficulties. Sometimes this method involves cumbersome computations. There
is a formula called Second Fundamental Theorem on Calculus that yields a
practical and convenient method for computing definite integrals in case where
the anti-derivative of the integrand is known. This method which was
discovered by Newton and Leibnitz utilises ‘the profound relationship’ that
exists between integration and differentiation. In this chapter we have the
following five sections dealing with the concept and applications of definite
integrals.

(i) To solve simple problems using second fundamental theorem of

calculus.

(ii) Properties of definite integral.

(iii) Reduction formulae

(iv) Areaunder the curve and volume of solid of revolution about an axis.

(v) Length of the curve and the surface area of a solid of revolution about

an axis.
7.2. Smple definiteintegrals:
First fundamental theorem of calculus:
X
Theorem 7.1 : If f(X) is a continuous function and F(x) = f f(t)dt, then we
a
have the equation F'(x) = f(x).
Second fundamental theorem of calculus:
Theorem 7.2 : If f(x) is a continuous function with domain a < x < b, then

b
f f(x)dx = F(b) — F(a) where F is any anti-derivative of f.
a
/2 g'nx
E le7.1: Evaluat ——d
xample valu ef1+coszx X
0
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TC/Z g'nx

Solution: Let | = f1+c052x ax
0
t = cos x
Let t = cosx X 0 | n/2
dt = —sinx dx (or) snxdx=—-dt | t 1 0
0 _
= e et 9= o35

1

1
Example 7.2 : Evaluate I e dx

0
Solution:
Using the method of integration by parts Here u=x

udv=uv— [vdu du = dx
(f Jvau)

1 L dv = €4 dx
fxe?‘dx:(xex)(l)—fexdx v=¢
0 0

= e- (&)

—e-(e-1)

=1

a
Example 7.3 : Evaluate f\/az — 2 dx
0

a 2 a
Solution: f\/aZ_xde:[’—Z(«IaZ_X2+%Sin_1;ﬂ
0
0
a2 .1 a

= 0+75|n_ 5—(0+0)

2 2 2

a _ a“ (m) ma

=L aniw=5(3) =%
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/2
Example 7.4 : Evaluate f e cos x dx

Solution:  Weknow [e™ cos bx dx = (aze j (a cosbx + b sin bx)
/2 /2
f ezxcosxdx—[( )(2cosx+sinx)}
0
o 0
=€(0+1)— 5 (2+0)
e 2
= 5552
EXERCISE 7.1
Evauate the following problems using second fundamental theorem :
/2 5 /2 3 1 3
(D)} fsin X dx 2 fcosxdx (3)f 9 —4x° dx
0 O 0
/4 /2 sin x dx
4 2sn’xsin2xdx (5 6) (o
& f ”I«/—4 2 © [9+ cosx
0
@) —X (8 SN X X 9 7t/zsin2xcosxdx
S @+5x+6 f\/ x2 S
1 0
1, 3 n2
(10) I e dx (11) fe Xcosxdx (12 j‘e‘xsmxdx
0 0 0

7.3 Properties of Definite Integrals:

b b
Property (1) : f f(x)dx = f f(y) dy
a a
Proof : Let F be any anti-derivative of f

b
i de=[FO)-F@] ...

a
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b
[Ty dy = [Fb)-F@] ... (i)
a
b b
From (i) and (ii) ff(x) dx = ff(y) dy
a a

That is, integration is independent of change of variables provided the
limits of integration remain the same.

b
Property (2) : ff(x)dx = —}f(x) dx
a b

Proof : Let F be any anti-derivative of f

b
[ dx = [Fb)-F@]  ...0)

a
a
ff(x) dx = [F(a) - F(b)] =-[F(b) - F(a)] ... (i)
b
b a
From (i) and (ii) ff(x) dx = - ff(x) dx
a b

That is, if the limits of definite integral are interchanged, then the value of
integral changesitssign only.

b b
Property (3) : f f(x)dx = f f(a+ b —x) dx

a a

Proof : Letu=a+b-x u=a+b-x
sodu = —dx X a
ordx =—du u b a

b a b b
.'.ff(a+ b—x)dx = —ff(u) du:ff(u) du:ff(x) dx

a b a a
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Property (4) : ?f(x)dx = ?f(a —X) dx

0 0
Proof : Letu=a-x u=a-x
oo du = —dx o] a
ordx = -du u a o]
a o] a a

.'.ff(a— X)dx = — ff(u) du= ff(u) du= ff(x) dx

0 a 0 0

Property (5) (Without proof) : If f(x) is integrable on a closed interva

containing the three numbers a, b and c, then

b c b
ff(x) dx = ff(x) dx + ff(x) dx

a a c
regardless of the order of a, b and c.

2a a a
Property (6) : f f(x)dx = f f(x) dx + f f(2a - x) dx
0 0 0
2a a 2a
Proof : Consider ff(x)dx = ff(x) dx + ff(x) dx
0 0 a

Q)

u=2a-x
Put x = 2a — u in the second integral on the R.H.S,, a 2a
anddx=-du a o}
2a o]
f f(x)dx = — ff(2a— u) du
a a
a
= f f(2a—u) du
0
a b b
= ff(Za—x) dx f f(x) dx = ff(y) d
0 a a
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2a a a
Hence (1) becomes ff(x) dx = f f(x) dx + ff(Za—x) dx

0 0 0
2a a
Property (7) : f f(x)dx = 2 f f(x) dx if f(2a—x) =f(x)
0 0
=0 if f(2a—x) = —f(x)
Proof : We know that by property
2a a a
f f(x)dx = f f(x) dx + ff(Za— X) dx ... (D
0 0 0
If f(2a—x) = f(x) then (1) becomes
2a a a a
ff(x)dx = ff(x) dx + ff(x) dx =2 j‘f(x) dx
0 0 0 0
If f(2a—x) = —f(xX) then (1) becomes
2a a a
f f(x)dx = f f(x) dx — f f(x) dx=0
0 0 0
Hence proved.
a a
Property (8) : (i) f f(x)dx = 2f f(x) dx, if fisan even function.
—a 0
a
(i) f f(x) dx=0 if fisan odd function.
—-a
a 0 a
Proof : Consider f f(x)dx = ff(x) dx + ff(x) dx . (D
_a —a 0
X=-—t
Let x=-tinthefirstintegra of the R.H.S. X | —a 0
Thendx =—dt t a 0
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.. (1) becomes } f(x) dx = }f(— t) (—dt) + ?f(x) dx

—a a 0

0 a
= —ff(—t) dt+ff(x) dx
a 0

a a
= [T de+ 1) dx
0 0

a a a
f f(x) dx = ff(— X) dx + ff(x) dx
—-a 0 0
Case (ii) : If ‘f" isan even function, then (2) becomes
} f(x) dx = ?f(x) dx + }f(x) dx
—a 0 0

a
= 2ff(x) dx
0

Case (iii) : If ‘f" isan odd function then (2) becomes
a

f f(x) dx = ? (- f(x) dx + ?f(x) dx
0 0

—a

a a
=~ (10 dx+ () dx=0

0 0
Hence proved.
/4 3.9
Example 7.5 : Evaluate f X~ sin“x dx.
- n/4
Solution: Let f(x) = x> sin® = x° (sin X)°
L H=%) = (%3 (sin (- %)

= (- (- sinx)?

= —x3g§n%

= —f(x)
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f(=x) =-f(x)
. f(x) isan odd function.

Tc/4
f xCsin’xdx. = 0 (by property)

-4
Example 7.6 :
1 _
Evaluate f log @Jr);) dx
-1
. X
Solution: Letf(x) = log (3+x)

f(—x)-Iog( ) log (3+X) —log (83— X)
= —[log (3-X) - log (3 + )]

| ral3) =0

Thusf(-x) = —f(x) .. f(x) isan odd function.

f Iog(3+xjdx 0
-1
Example 7.7 :

/2
Evaluate : fxsmxdx

—7/2
Solution: Let f(X) = xsinx
f-x) = (-x) sin(-x)
=xsnx (= sin(-x)=-sinXx)
.. f(x) isan even function.

/2 2
fxsinxdx=2 fxsmxdx
- n/2 0

=2 {x(- cosx)} f( cos X) dx
0
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Using the method of integration by parts

/2 /2
=2(0+ j‘cosxdx =2[sinx
0
0
=2[1-0 =2
/2 2
Example 7.8 : Evaluate j‘ sin“x dx
—7l2
Solution: Letf(x) = sin’x = (sin x)2

f(- %) = (sn (= X)? = (= sinx)?=sin’x = f(x)
Hence f(X) is an even function.

/2 5
fsm xdx—2fsm x dx = 2>< f(l C0s 2x) dx
- 72 0 0
_[ sin ZXT/?_E
Lt 2 2
W2 f(sinx
Example 7.9 : Evaluate f fanx) + f(cosx) dx
0
. "2 f(sinx
Solution: Letl = ff(smx) +1(cos %) dx (D
0

o )
3 t(anlG-)) (o5

™2 f(cosx)
B ff(cosx) +f(s|nx)d ... (2
0
12
(D) +(2gives 21 = ﬁf é%%%&%& dx = fdx [x]"(/)2 =
0 )

Nla

N
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1
Example 7.10 : Evaluate f x(1 - x)" dx

0
1
Solution:  Let| =f x(1 - x)" dx
0

1 a a
f (1-x[1-@1- x)] dx [ f f(x) dx = f f(a— x) dx
0 0

o

1
f(l x) X" dx—f(x XL dx
0 0

|:n+l n+2} |: 1 1 :|_n+2_(n+1)

n+1 n+2 n+1 n+2]"(n+1)(n+2)

1
f x(l—X)ndxz—(n+1) GES)
0

/2
Example 7.11 : Evaluate f log (tan x)dx

0

/2
f log (tan x)dx .. (D

0

Fofon(z- )

0

/2
f log (cot x) dx ... (2

0

/2
(1) + (2) gives 2l = 7tf[log (tan x) + log (cot X)] dx

0

Solution: Let |
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/2 /2
f [log (tan x) . (cot )] dx = f (log1) dx=0
0 0
~1=0 (~log1=0)

n/3 dx
Example 7.12 : Evaluate f 1+ corx

/6

. 7'5/3 dX
Solution: Letl = f T+ corx

/6

TC/S :!Sinx
sin x+\/cosxdx

/6

e

Q)

sin(g+%—x) dx

)+ feos(5 + £-x)
b b
[ ff(x) dx = ff(a+ b-x) dx}
a

i
(3o fem(3 -

= 3 \[cosx o
- f \Jcosx +4/sin x
/6
. /3 a/sin x ++/cos x
(1) + (2) gives 2l f Jcosx +/Snx ax

/6

12

+

ola

1l
ola — wla
w

1]
ola — wla

e
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/6
-
T 12
EXERCISE 7.2
Evaluate the following problems using properties of integration.
1 4 4 . g 2
D fsmxcos X dx ()] fx €os X dx (©) f sin“x cosx dx
-1 —n/4 0
/2 /2 9 /4
4% f cos’x dx 5) f Sin“x cosx dx (6) f X Sin°X dx

- /2 - /2 !

1 1
@) flog()%— )dx ()f%( (9)fx(1_x)10dx
0

0
7'5/3 dx
(10) f1+ tan x
/6

7.4 Reduction formulae:

A formula which expresses (or reduces) the integral of the nth indexed
function interms of that of (n — 1)th indexed (or lower indexed) function is
called areduction formula.

Reduction formulae for | sinx dx. f cos'x dx (nisapositiveinteger) :
1

. 1. n-1
Result 1: 1f I =/ sinxdxthen 1,=—-1sin" xcosx+—F=1,_»

1 -1 -1
Result 2 If In=fcos”xdxthenIn=ﬁcosn lxsmx+nn lh_>

Result 3:
n-1 n-3 n-5 2 .
/2 N /2 5 n 'n_z'n_4"'§'1Whennlsodd
fsmxdx— fco xdx = n-1n-3n-5 1= i
0 0 n n-2 n-4 2 2wenn|seven
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Note: For the proofs of these above three results, refer Solution Book.
Example 7.13 : Evaluate: f sin>x dx

Solution:  If I, = ['sin"xdx, thenwe have
In=—%§n”‘lxcosx+%lln_2 ()
fsin5xdx =g
= —:—5Lsin4xcosx+gl3 (whenn=5in1l)
= —:—5Lsin4xcosx+§[—%sin2xcosx+%IJ (whenn=3inl)

. 1. 4 . 8
fsn5xdx=—gsn4xcosx—1—551n2xcos><+l—sll (1))
Il:fsinlxdx:—cosx+c

4

4 .-
XCOSX—lSSln

'fsin5xdx——lsjn xcosx—ﬁcosx+c
" -5 15
Example 7.14 : Evaluate : f sin dx

Solution : 11, = fsin"xdx, then we have

In=—%sin”‘lxcosx+nflln_2 ()
fsin6xdx= lg

:—%sinsxcosx+gl4 (whenn=6in1)

=—%sinsxcosx+g[—%8in3XCOSX+4§1'2} (whenn=4in1)

. 1. 5 . 5 .
fsmexdx=—ésmsxcosx—ﬂsm3xcosx+§lz (whenn=2inl)
_1_s 5 3 5[ 1_ 1
= —gSn°xcosx—osin"xcosx+g| -5 sinxcosx+5 g

fsindxdx = 1.5 S .3 S . S
sin®xdx = — 5 SN COS X — 57 SiN°X Cos X — 75 SN X cos X + 75 |
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lo=Jsin%dx = fdx=x

.f-sd_l-s 5.3 S L2
<. JSin®xdx = — £ SN cOS X — 4 SIN°X COS X — 75 SIN X COS X + 75 X

Example 7.15: Evaluate :

nl2 2 2 3 2n 9 X
0] fsm X dx (i) j‘cosxdx (|||)fsm de
0 0 0
6
(iv) j‘cos 3x dx
0
Solution : (i))We have
/2 _ _
fsin"xdx=n—nl'b % when ‘n’ isodd
0
n2 6 4 2 16
fsm Xdx=%'5'3=35
0
/2 _ _ _
(i) fcos”xdx:nnl-z_g-z_i-"%-% when ‘n’ iseven
0
M2 Biax=L.8.3.1 1 _35n
o [COSXAX =g 5 4 2 27 256
0
2n
. 9X
(iii) fsm 4dx
0
t=x/4
Put%,r:t X 0 2n
.odx =4dt t 0 /2
2n /2
. 9X .9 o §.§.‘_'r.2.)_5_12
fsm 4dx—4 fsmtdt—4.(9 7'5°'3°)=315
0 0
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/6 7
(iv) f cos' 3x dx

0
t=23x
Put 3x =t x | 0| n/6
3dx = dt
dx = 1/3 dt t 0 /2
M8 T3 dx = & a-1[8-22]- 18
fcos X dX = fcost 3753|105
0
2 -,
Example 7.16 : Evaluate : fsm x cos?X dx
0
Solution :
/2 /2
fsm xcoszxdx—fsm X(1-sin x)dx
0 0
/2 /2 4 /2
= f(smx smx)dx—fsmxdx fsmxdx
0 0 0
_31rn 531n_=n
T4°2°'2 6422732
two

Two important results : The following results are very useful in the

evaluation of certain types of integrals.
(1) If uand v are functions of x, then

fudv=uv—u'vy + UV, —U"'vg+ ...+ (- )M U, +
where U, u”, U’ ... are successive derivatives of u and vy, V,, V3 ... are

repeated integrals of v
The above formulais well known as Bernoulli’ s formula.
Bernoulli’s formula is advantageously applied when u = X" (n is a positive
integer).
[n
(2) If nisapositive integer, then j‘x e dx = ol

0
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Note: The above formulais known as a particular case of Gamma Integral.

Example 7.17 : Evaluate :

1 00 00
(i) x3e® d (i) [xe ®ax (i) fx5e_4x dx  (iv) fe_mxx7 dx

0
Solution : dv = e dx
(1) Ixe™ dx u=x3 v =12~
}Jsing Bernoulli’s formula U = 32 v, = U4 e
udv =uv—uvy + U'vy ...

! 2 u” = 6x v, = 1/8*
We get
u"’ =6 vz = 1/16 e

fx?’ezxdx—(xg’)( )(3x)( )+(sx)( )(6)(

_1 3 35 3 3
'Zez[x 2"224}

?)

1 _ 4X
(i) [ xe ™ x dv=e"dx
— — _l —4X

0 u=x v=-ye
Using Bernoulli’s formulawe get 1 4

1 u=1 vy =7ge

fre o= (-Ge)- 0 )],

0
-(—1e‘4—0)——(e‘4—e0)
U4 16
_1 5 4
167 16°
Ax —4X _g
(|||)fxe dx  Using Gamma Integral fxe dx= 6

0

w , |7
(iv) f e ™ dx= e (Using Gamma Integral)
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EXERCISE 7.3

(1) Evaluate: (i) fsin4xdx (ii) fcosf’xdx
/2 5 /2 9

(2) Evauate: (i) fsin X dx (i) fcos X dx
0 0
nl4 3 /6 7

(3) Evauate: (i) fcos 2x dx (i) fsin 3x dx
0 0
1. % 6 X2

4 Evaluate:(i)fxe’ X dx (ii)fx e < dx
0 0

7.5 Areaand Volume:
In this section, we apply the definite integral to compute measure of area,
length of arc and surface area. In our treatment it is understood that area,
volume etc. is anumber without any unit of measurement attached to it.
7.5.1 Area of bounded regions:
Theorem : Let y = f(x) be a
continuous function defined on
[a, b], which is positive (f(X) lies on Ay =fx
or above x-axis) on the interval
[a, b]. Then, the area bounded by the <
curve y = f(x), the x-axis and the 1 =
ordinates x = aand x = bis given by

»
»

b b
Area= ff(x)dx or fydx

a a

If f(x) < 0 (f(x) lies on or below
x-axis) for al xin a < x < bthen area
isgiven by

b b
Area= f (-y)dx= f (- f(x) dx)
a a

(i.e., The area below the x-axis
IS negative)
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Example 7.18 : Find the area of the region bounded by the line 3x — 2y + 6 = 0,
x =1, x=3and x-axis.

Since the line 3x — 2y + 6 = 0 lies above i >
the x-axisin theinterval [1, 3], + 0@@
(i.e.,y>0forx e (1,3) ﬁ’/k
the required area 1
3 3 3 /
A=fydx=§ f(x+2)dx di
1 1 T o
of 1 23
302, 1°
=2\ 2 T L Fig. 7.3
371 3
:E |:§(9—l)+2(3—1):|:§[4+4]
Area = 12 sg. units
Example 7.19:

Find the area of the region bounded by the line 3x — 5y — 15 =0, x = 1,
X =4 and x-axis.
The line 3x — 5y — 15 = 0 lies Y
below the x-axis in the interval x =1
andx=4

4
~.Required area = f (-y) dx
1

7

4
1 34 3 X
—5(3x—15) dx=§ f(5—x) dx=§[5x—7}l
1

[5(4 ~1)- % (16 — 1)}

1
—

glw gIlw =

151 9 .
[15—7J =75 0. units.

Example 7.20: Find the area of the region bounded y = X2 —Bx+4, x=2,x=3
and the x-axis.
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For all x, 2 < x < 3 the curve lies
below the x-axis.

3
Required area = f (-y) dx \ /

— (% = 5x + 4) dx

N S— WN

3 2 3
_[X__5X_+4X} Fig. 7.5
37°2 )

—[(9—4—25+ 12)—(%—%)+8)}=—[_—é3} = %sq. units

Area between a continuous curve and y-axis
Let x = f(y) be a continuous
function of y on [c, d]. The area
bounded by the curve x = f(y) and the
abscissae y = ¢, y = d to the right of

d
y-axisis given by f xdy

. Fig. 7.6

If the curve lies to the left of
y-axis between the lines y = ¢ and

d
y =d, the areais given by f(— X) dy.

Cc

Example 7.21: Find the area of the
region bounded by y =2x+ 1,y =3,
y=5andy-axis.

Solution : Theliney =2x + 1 liesto
the right of y-axis between the lines
y=3andy=5.

d
.. Therequired area A = f xdy

c
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Example 7.22: Find the area of the region boundedy =2x+4, y=1andy=3
and y-axis.
The curve lies to the left of y-axis A

between thelinesy=1andy =3 <
.. Areaisgiven by <
3
A= f(— X) dy
1

3 (y-4
:f‘( 2 )dy
1 Fig.7.9

NI

3 1 )f3 1 .
4-y)dy=5|4y— = 5[8-4] =2 . unit
{( y)dy Z[V L 5[8-4] units.

Remark : f (x) f (x)
If the continuous curve f crosses

b
the x-axis, then the integral f f(x) dx

a
gives the algebraic sum of the areas
between the curve and the axis, Fig. 7.10
counting area above as positive and U
below as negative.
b c d b
ff(X) dx = ff(x) dx + f(— f(x)) dx + ff(x) dx
a c d
2 ) ) )

above axis below axis  above axis

106



5
Example 7.23: (i) Evaluate the integral f (x — 3)dx

1
(i) Find the area of the region bounded by theliney + 3=x, x=1andx=5
Solution :

0 Fe-e=[Eos] B35 -r-r=0.
1

(ii) Theliney =x— 3 crossesx-axisat x =3
From the diagram it is clear that A,
lies below x-axis.

3
A= f (-y)dx

1
As A, lies above the x-axis

5
A= f ydx
3

Fig. 7.11

5 3 5
- Totd area:f(x—?;)dx: f—(x—3)dx+f(x—3)dx

1 1 3
= (6-4) +(8-6)
=2+2

=4sg.units ... (I)
Note:

From | and |1 it is clear that the integral f(x) is not always imply an area.
The fundamental theorem asserts that the anti-derivative method works even
when the function f(x) is not always positive.

Example 7.24.

Find the area bounded by the curve y = sin 2x between the ordinates x = 0,
X = n and x-axis.

Solution :

The points where the curve y = sin 2x meets the x-axis can be obtained by
putting y =0.

sn2x=0 = 2X=nn, neZ
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X =

.

N(a

. i.e.,x={0,irg,in,ir3

NIS

.. Thevaluesof x betweenx=0arex=mn arex=0, % T
The limitsfor the first arch are 0 andg and the curve lies above x-axis.

The limits for the second arch areg and rt and the curve lies below x-axis.

-.Required area y
A= 7T/zsin 2x dx + g (- sin 2x)dx
- - /2 T
{) n{Z 0 *
_ (— cost)n/ 2 (cost) n Y
B 2 0 2 )nl2 Fig. 7.12

[-cos T + cos 0 + cos 2n — cos 7]

NI

=§[1+1+1+1]=25q.units.

Example 7.25:

Find the area between the curves y = G

Xx=—-2andx=4

- X — 2, x-axis and the lines

Solution: y = X2 —x—2
=xX+1)(x-2)
This curve intersects x-axisat x = — 1 and
X=2
Required area= A + A, + Ag
The part A, lies below x-axis.

2
A= f y dx
-1
Hence required area
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-1 2 4
fydx+ f(—y)dx+fydx

-2 -1 2

-1 2 4
= I(XZ—X—Z)dX+ f—(xz—x—Z)dx+f(x2—x—2)dx
-2 -1 2

11 26

=€+%+§=15 . units

General Area Principle:
Let f and g be two continuous
curves, with f lying above g. then the @f@) . Obf0)
aea R between f and g, from
x=atox=Dh, isgiven by

b I [
R= f (f - g)dx = =
a g
No restriction on f and g where (a,g () (b, g (b))
they lie. Both may be lie above or
below the x-axis or g lies below and Fig. 7.14

f lies above the x-axis.
Example 7.26: Find the area between the line y=x + 1 and the curvey = X2 — 1.
Solution : To get the points of intersection of the curves we should solve the
equationsy=x+landy= X2 — 1.
we get, X¥-1=x+1
XX —x-2=0
= xX-2)(x+1) =0
L X=-lorx=2
.. The line intersects the curve at
x=—-1landx=2.
. br f(x X
Required area = f [ab(O\)/e - b%l(ozle dx Below :y =x2-1

a Fig. 7.15

2
= [(x+1) - 6@ - 1)) dx
-1
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2 2 312
f [2+x—x2]dx=[2x+X7—X§]_1
-1

[4+2—%}—[—2+%+%} = g sg. units

Example 7.27:

Find the area bounded by the curvey = xC and the line y=X
Solution : The line y = x lies above the curve y = x3 in the first quadrant and
y = x3 lies above the line y = x in the third quadrant. To get the points of
intersection, solvethe curvesy =x3,y=x = x3=x. Weget x={0, + 1}
0 1
Therequired area= A + A, = f [9(®) - f(x)]dx + f [f(¥) — g(x)]dx
-1 0

0 3 1 3
f(x —x)dx+f(x—x)dx
-1 0

|
1
><-l>
|
>
o
+
1
>
|
X
e
=y

1
N\
o
|
=
N\
o
|
NI~
+
N

|
<|3
TR
Nl
|
o

Fig. 7.16
Example 7.28: Find the area of the region enclosed by y2 =xandy=x-2

Solution : The points of intersection of the parabola y2 = x and the line
y=x—2ae(1,—-1) and (4, 2)

To compute the region [shown in
figure (6.17)] by integrating with
respect to x, we would have to split
the region into two parts, because the
equation of the lower boundary
changes a x = 1. However if we
integrate with respect to y no
splitting is necessary.
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2
Required area = [ (f(y) — o(y) dy
-1
2 % 2
= 2 — d 2( 2 —ﬁj
slo+a-ylay={3+-3)
-1
(3-3-w-0-(3

= §+ 6—%:%sq. units.
Example 7.29: Find the area of the region common to the circle X2 + y2 =16
and the parabolay2 = 6X
Solution : The points of intersection
ofx2+y2:16andy2:6xare
(2. 23) and (2. - 2y/3)
Required areais OABC
Due to symmetrical property, the
required area
OABC = 20BC
i.e, 2{[Areabounded by y2 = 6X,
X = 0, x = 2 and x-axis] + [Area A
boundedbyx2+y2: 16, x=2,x=4
and x-axig]} Fig. 7.18

2 4

=2 r/6xdx+ 2 \/16 — X dx
foxaxr2f N
0 2

22 [X 2 2 42-—1X]4
=2/6 [@0+2 SN4 - x"+5dn 7 )

8412 8
=43E-2\/1_2+8n-§7T
=3 (4n++3)
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Example 7.30: Compute the area between the curvey = sin x and y = cosx and
thelinesx=0andx=n

Solution : To find the points of
intersection solve the two equations.

o _1 _n
Smx-cosx-\/—Z:X—4

o _-1 _on
SinX = Cosx =5 = x=

From the figure we see that cosx > sinxfor0£x<%and sin x > cos x for

n

4<X<TC
/4 i

. AreaA = f(cosx—sinx)dx+ f(sinx—cosx)dx
0 w4

= (sinx+ cosx)n/4+ (- cosx—sinx) "
0 /4

= (sin %+ cos%)—(si n 0 + cos0) + (—cost — sinwt) — (— cos%—sin %)

1 1

- (%+@)_(0+1)+(1-0)—(—V—1—2 - @}Nﬁsq- units.

2
Example 7.31: Find the area of the region bounded by the eIIipse? + g =1

Solution : The curve is symmetric
about both axes.

- Area of the ellipse = 4 x Area
of the éllipsein the | quadrant.

a
I=4fydx
0

Y o V@ -

- x
D

ab 2 2
=4 faNa-x dx Fig. 7.20
0
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4b @ 4b| x &2 1P
Ef\/az—xzdx :E[z\/az—xz+75m 1(5)}0
0

_ %[m%zsinl(l) - 0} :4?? (%2 @j

= wab sg. units.

o

a /2
By using parametric formi.e., 4 fydx =4 f bsno6 (-asn 0) do, we

0 0
get the same area.

Example 7.32: Find the area of the curvey2 =(x- 5)2 (x—6)
(i) betweenx=5andx=6  (ii) betweenx=6andx=7

Solution :
(i) ¥*=(x-57%(x-6)
Ly=(X=5)\x-6

Thiscurvecutsthe x-axisat x=5and at x =6

When x takes any value between 5 and 6, y2 iS negative.
.. The curve does not exist in theinterval 5 < x < 6.

Hence the area between the curve at x =5 and x = 6 is zero.

QS

b
(ii) Required area = f ydx

/
N
)
a /

= 2}(x—5)\/x—6dx
6

(Since the curve is symmetrical

about x-axis) ]
Fig. 7.21

7 Take t=x-6
:2f(t+1)\[tdt dt = dx

6 t=x-6

1 X 6 7
=2 ¢ (2 + Yt

S ) t [0 | 1

0
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1
52 312
= 2[[?+t?] :2(%+§) :2(%):% . units

2 20
Example 7.33: Find the area of the loop of the curve 3ay2 =X(X — a)2
Solution :
Puty=0;wegetx=0,a
It meetsthe x-axisatx=0and x=a

. Here a loop is formed between @0 "
the points (0, 0) and (a, 0) about \-___J'U’U/ \
x-axis. Since the curve is symmetrical
about x-axis, the area of the loop is

twice the area of the portion above the
X-axis.

y

Fig. 7.22

a
Required area = nydx

0
_ oqax(x—a) 2 A gp
——2f \/3—a dX——\/g—a.f[X —a\/;( dx
0 0

a
_ 2 [ZX5/2_2_61X3/2} _8a _
3a Lo 3 o 153 45

8+/3a°

~. Required area = =~ . units.

Example 7.34:
Find the area bounded by x-axis and an arch of the cycloid
x=a(2t—-sn2t),y=a(l-cos2t)
Solution : The curves crosses x-axiswheny = 0.
sa(l-cos2t) =0
sLcos2t=1 ; 2t=2nm, nez
t=0, 7, 2n, ...

.. One arch of the curvelies between O and =
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b
Required area = f y dx

a
T y=a(l - cos2t)
=fa(1—c032t) 2a (1 - cos2t) dt x=a (2t —sin2t)
0 dx = 2a(1 - cos 2t) dt

Y T T
= 2a° [ (1-cos 2t)%dt = 2a° [@ sin’t)%dt = 8a° fsin4t it
0 0 0

~ 27t/2_ 4 “2a _.a
= 2x 8a fsmtdt .j‘f(x)dx-fo(Za—x)dx
0 0 0

3 1 .
= 16a° [Z X5 % %} = 3na’ Sg. units.

7.5.2 Volume of solids of revolution :

Let f be a non-negative and continuous curve on [a, b] and let R be the
region bounded above by the graph of f, below by the x-axis and on the sides by
thelinesx=aand x=b[Fig 6.23 (a)]. f(x)

f(x)

Fig. 7.23(a) Fig. 7.23 (b)

When this region is revolved about the x-axis, it generates a solid having
circular cross sections (Fig. 7.23(b)]. Since the cross section at x has radius f(x),
the cross-sectional areais A(X) = nt [f(X)]2 = ny?

The volume of the solid is generated by moving the plane circular disc
[Fig.6.23(b)] along x-axis perpendicular to the disc.
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b b
Therefore volume of the solid isV = f 7 [f(¥)] 20x = f T y2 dx

a a

(i) If the region bounded by the Y
graph of x = g(y), the y-axis and on
the sides by the lines y=candy =d &)
(Fig. 7.24) then the volume of the
solid generated is given by

d 2 d »

V= [nlgi)]7dx= [ x"dy
c c
Fig. 7.24

Example 7.35:

Find the volume of the solid that results when the ellipse

ﬁz +)é =1 (a>b>0)isrevolved about the minor axis.

b% "~
Solution :
Volume of the solid is obtained by K
revolving the right side of the curve b

§ + )bé = 1 about the y-axis.

Limits for y is obtained by putting S
X:03y2:b2:>y:ib -b

2
From the given curve X2 = a_2 (b2 - y2) .
b Fig. 7.25

. Volumeisgiven by

d b g2 2 b
V:frcxzdy: fn% (bz—f)dy:Zn%(bzy—é)
0
c b

2
a 3 bz) 4 5 . .
=2 —(b — =5 |- = a“bcubic units
T p2 373
Example 7.36:

Find the volume of the solid generated when the region enclosed by
y=4/%, y=2and x = Qisrevolved about the y-axis.
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Solution : Since the solid is generated by
revolving about the y-axis, rewrite y =[x
asx=y.

Taking the limitsfory,y=0andy = 2
(putting x = 0inx=y2, wegety=0)

d
Volumeisgivenby V = f T x2dy

)
2
©)
4)

©®)
(6)

()

®)

9)
(10)

c Fig. 7.26
2 2

= f T y4 dy = [Eg} 0 = isﬁ cubic units.
0

EXERCISE 7.4

Find the area of the region bounded by thelinex -y =1 and

(i) x-axis;x=2and x=4 (i) x-axis, x=—2and x=0

Find the area of the region bounded by thelinex — 2y — 12 =0and

(i) y-axis,y=2 andy=5 (ii) y-axis, y=-1 andy=-3

Find the area of the region bounded by the liney = x — 5 and the x-axis
between the ordinatesx =3 and x = 7.

Find the area of the region bounded by the curve y = 3x% - x and the
x-axisbetween x=-1andx= 1.

Find the area of the region bounded by X2 = 36y, y-axis,y=2andy =4.
Find the area included between the parabolay2 = 4ax and its latus rectum.

X2

Find the area of the region bounded by the eIIipseg + é = 1 between the
two latus rectums.

Find the area of the region bounded by the parabolay2 = 4x and the line
2X—-y=4.

Find the common area enclosed by the parabolas 4y2 =9xand 3x° = 16y
Find the area of the circle whose radiusis a

Find the volume of the solid that results when the region enclosed by the given
curves: (11to 14)

(11)
(12)

y=1+ x2, x=1,x=2,y=0isrevolved about the x-axis.

2ay2 =X(X— a)2 isrevolved about x-axis, a > 0.
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(13) y= X3, x =0, y = lisrevolved about the y-axis.
2
14 ? + o2 = lisrevolved about major axisa>b > 0.

(15) Derive the formula for the volume of aright circular cone with radius ‘r’
and height ‘h’.

(16) The area of the region bounded by the curve xy = 1, x-axis,
x = 1. Find the volume of the solid generated by revolving the area
mentioned about x-axis.

7.6. Length of the curve:
(i) If the function f(x) and its derivative f '(x) are continuous on [a, b]
then the arc length L of the curvey = f(x) from x = ato x = b is defined

b 2
_ dy
tobeL—f 1+(dx) dx
a
(ii) Similarly for a curve expressed in the form x = g(y), where g is

continuous on [c, d], the arc length L fromy =ctoy =disgiven by
d dx)2
L= f 1+ (@) dy
c
(iii) When the equation of the curve y = f(X) is represented in parametric

formx =¢(t), y=Y¥(t), a <t<p where¢(t) and ¥(t) are continuous
function with continuous derivatives and ¢’(t) does not vanish in the

giveninterval then L = ?\/ (0'())% + (¥'(1))? dt

o

7.7 Surfacearea of a solid :
(i) If the function f(x) and its
derivatives f '(x) are continuous on f(x)
[a, b], then the surface area of the solid
of revolution obtained by the
revolution about x-axis, the area x
bounded by the curve y = f(X) the two
ordinates x = a, x = b and x-axisis

X
a Fig. 7.27

b 2
SA.:any 1+(%Y) dx
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(ii) Similarly for the curve expressed y

in the form x = g(y) where g'(y) is

continuous on [c, d], the surface area g(®y)
of the solid of revolution obtained by

the revolution about y-axis, the area

bounded by the curve x = g(y) the two

abscissay=c,y=dandy axisis

d dx\?
SA.:any 1+(@) dy

c
Fig. 7.28

(iii) When the equation of the curve y = f(X) is represented in parametric

formx=g(t), y=h(t), o <t<p whereg(t) and h(t) are continuous

function with continuous derivatives and g'(t) does not vanish in the

interval, then SA. = 2n t }By \(g®)2 + (P (D) 2dt.

t=a
Example 7.37: Find the length of the curve 4y2 = x> between x =0 and x = 1
Solution : ‘):

4y =53 4y =x’
Differentiating with respect to x

dy _ .2

8y dx ~ 3X x =1
2 » X
dy _
d

3%
)Y
2
N
Fig. 7.29
N P -
- 1+16><4y2_ 1 ee 1116

The curveis symmetrical about x-axis.
The required length

1 2 1 12
L=2f 1"‘(%@ dx:2f(1+%) dx
0 0
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9x\7° |1

Xl 9 3 27 16) |y
| 1672 o
_64[125 1}-@
=271 64 1|27

a
Solution : y
A

_ X\23  (y\23
Example 7.38: Find the length of the curve (—) + ( ) =1

X = a cost, y = a sn’t is the
parametric form of the given astroid,
where0<t<2n

dx . - / > X

a:—3acosztsmt : a a

N 2B 4 y203 =a203
-a

dat = 3asint cost Astroid

Fig. 7.30

2 2
(%) " (%}9 = \/9a2 cos’t sint + 9a® sint cos’t = 3asint cost

Since the curve is symmetrical about both axes, the total length of the
curveis 4 timesthe length in the first quadrant.

But t variesfrom 0 to% in the first quadrant.

/2 2 2
~ Length of the entire curve= 4 1 (%() + (%%) dt

0
2 2
=4 f 3asint cost dt=6a fsm2tdt
0 0

/2
= 6a.[—%21 =-—3a[cosn —cosO]
0

=-3a[-1-1]=6a
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Example 7.39: Show that the surface area of the solid obtained by revolving the
arc of the curve y = sin x from x = 0 to x = n about x-axis is

2n [\2+1og (1 +/2)]

Solution : y=sinx

Differentiating with respect to x SX = COSX.

21+ (g@z =+/1 + cos’x

b dy)?
Surfacearea:IZny l+(d) dx

X
a
when the areais rotated about the x-axis.
b8 ) SZ q Put cosx =t t = cos X
S=  2nsinXx + Ccos“X dx .
f & —sinxdx =dt X 0 o
0 t 1 |-1

~1 1
= (o 1+t2(—dt)=4ﬂ:f'\/1+t2(dt)
0

1

= 4nE\/th2 +%Iog (t+\/1Tt2)}

=21 [\[2+log (1 ++/2)] -0
= 21 [\2+1og (1 ++/2)]

Example 7.40: Find the surface area of the solid generated by revolving the
cycloid x = a(t + sint), y = a(1 + cost) about its base (x-axis).
Solution: y=0 = 1+cost=0 cost=-1 = t=-m,=

x=a(t+sint) ; y=a(l+cost)

% = a(1+ cost) %%z—asint

1
0

2 2
(%() + (%%) = \/a2 1+ cost)2 +a’sint=2a cos%
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)
)

©)

(4)

T
Surface area= f 2na (1 + cost) 2a cos% dt

—T

T T
f 2na.2c032%.2acos%dt =16na2f cossédt

- n 0
_ 22 4 t_
= 16na fZCOS X dx [Takez—xJ
0

2
= 328’3 = 32na’ x 5
= G—;naz Sg. units.

EXERCISE 7.5
Find the perimeter of the circle with radius a.
Find the length of the curvex = a(t — sint), y = a(1 — cost) betweent=0
and .
Find the surface area of the solid generated by revolving the arc of the
parabolay2 = 4ax, bounded by its latus rectum about x-axis.

Prove that the curved surface area of a sphere of radius r intercepted
between two parallel planes at a distance a and b from the centre of the
sphere is 2nr (b — @) and hence deduct the surface area of the sphere.
(b>a).
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8. DIFFERENTIAL EQUATIONS

8.1. Introduction :

One of the branches of Mathematics conveyed clearly in the principal
language of science called “Differential equations’, plays an important role in
Science, Engineering and Socia Sciences. Let us analyse afew of the examples
cited below.

1)

)

3)

(4)

©)

Suppose that there are two living species which depend for their
survival on a common source of food supply. This fact results in a
competition in consuming the available food. The phenomenon, is
commonly noticed in the plant life having common supply of water,
fertilizer and minerals. However, whenever the competition between
two species begins, the growth rate of one is retarded and we can note
that the rate of retardation is naturally proportiona to the size of the
other species present at time t. This situation can be expressed as a
Mathematical model whose solution would help us to determine the
time at which one species would become extinct.

Several diseases are caused by spread of an infection. Suppose that the
susceptible population of a town is p. One person gets the infection.
Because of contact another susceptible person is aso infected. This
process continues to cover the entire susceptible population. With some
assumptions to simplify the mathematical considerations this situation
can be framed into a mathematical model and a solution can be
determined which would provide informations regarding the spread of
the epidemic in the town.

If adead body is brought for amedical examination at a particular time,
the exact time of death can be determined by noting the temperature of
the body at various time intervals, formulating it into a mathematical
problem with available initial conditions and then solving it.

The determination of the amount of a radioactive material that
disintegrates over a period of time is yet another mathematical
formulation which yield the required result.

Several examples exist in which two nations have disputes on various
issues. Each nation builds its own arms to defend the nation from
attack. Naturally a spirit of race in building up arms persists between
conflicting nations. A small grievance quite often creates a war-like

123



situation and adds to increasing the level of arms. These commonly
experienced facts can be presented in a mathematical language and
hence solved. It is a fact that such a model has been tested for some
realistic situations that had prevailed in the First and Second World War
between conflicting nations.

From the above examples it is found that the mathematical formulation to all
situations turn out to be differential equations. Thus the latent significance of
differential equations in studying physical phenomena becomes apparent. This
branch of Mathematics called ‘Differential Equations’ is like a bridge linking
Mathematics and Science with its applications. Hence it is rightly considered as
the language of Sciences.

Galileo once conjectured that the velocity of a body falling from rest is
proportional to the distance fallen. Later he decided that it is proportiona to the
time instead. Each of these statements can be formulated as an equation
involving the rate of change of an unknown function and is therefore an

example of what Mathematicians call a Differential Equation. Thusg—f =—ktisa
differential equation which gives velocity of a falling body from a distance s
proportional to thetimet.

Definition: An eguation involving one dependent variable and its derivatives
with respect to one or more independent variables is called a Differentia
Equation.

If y = f(X) is agiven function, then its derivative%ﬁ can be interpreted as the

rate of change of y with respect to x. In any natural process the variables
involved and their rates of change are connected with one another by means of
the basic scientific principles that govern the process. When this expression is
written in mathematical symbols, the result is often a differential equation.

Thus a differential equation is an equation in which differential coefficients
occur. Its importance can further be realised from the fact that every natural
phenomenais governed by differential equations.

Differential equation are of two types.
(i) Ordinary and (ii) Partial.
In this chapter we concentrate only on Ordinary differential equations.

Definition : An ordinary differential equation is a differential equation in
which a single independent variable enters either explicitly or implicitly.
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. . d . . d d
For instance (i) & =x+5 (ii) (y')2 + (y’)3 +3y= X (iii) d—zxg— 4&+ 3y=0
are all ordinary differential equations.

8.2 Order and degree of adifferential equation :

Definition : The order of a differential equation is the order of the highest
order derivative occurring in it. The degree of the differential equation is the
degree of the highest order derivative which occurs in it, after the differential
equation has been made free from radicals and fractions as far as the derivatives
are concerned.

The degree of a differential equation does not require variablesr, s, t ... to
be free from radicals and fractions.
Example 8.1: Find the order and degree of the following differential equations:

dy (B (P o dy . d
3

o d K .

(iii) d_)2(¥=|:4+ (a%) j| (iv) (1+y')2=yr2

Solution : (i) The order of the highest derivative in this equation is 3. The
degree of the highest order is 1. .. (order, degree) = (3, 1)

® y=afiead = v=dd) oy
dx

dy

Making the above equation free from fractionsinvolving dx e get

d dy)?
y. a¥ = 4(&) + 3x
Highest order = 1
Degree of Highest order = 2
(order, degree) = (1, 2)

3
. d dy\2 | 4
(iii) d—zx§=[4+(a§) }
To eliminate the radical in the above equation, raising to the power 4 on

4 3
both sides, we get @—ngj = [4 + (%) J . Clearly (order, degree) = (2, 4).
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(iv) (L+y)°=y? = 1+y2+2y =y?fromwhichit follows that
2% +1=0 .. (order, degree) =(1, 1).

8.3 Formation of differential equations:
Let f (X, y, ¢1) = 0 be an equation containing X, y and one arbitrary constant
c;. If ¢4 is eliminated by differentiating f (X, y, ¢;) = O with respect to the

independent variable once, we get a relation involving X, y and % , which is

evidently a differential equation of the first order. Similarly, if we have an
equation f(x, y, ¢4, ¢;) = 0 containing two arbitrary constants ¢, and c,, then by

differentiating this twice, we get three equations (including f). If the two
arbitrary constants ¢; and ¢, are eliminated from these equations, we get a

differential equation of second order.

In general if we have an equation f(x, y, ¢, Cy, ...C,) = O containing n
arbitrary constants cq, C, ... ¢, then by differentiating n times we get (n + 1)
equationsin total. If the n arbitrary constants ¢4, C,, ... ¢, are eliminated we get
adifferential equation of order n.

Note: If there are relations involving these arbitrary constants then the order
of the differential equation may reduceto less than n.

Illustration :

Let usfind the differential equation of straight linesy = mx + ¢ where both m
and c are arbitrary constants.

Since mand ¢ are two arbitrary constants differentiating twice we get

d y

a¥= m A io
& ;
d Vi
dX2: 0 A

Both the constants m and ¢ are > x
seen to be eliminated. Therefore the Y

. . . . . 2
required differential equation is N
dy_ e

e Fig. 8.1
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Note : In the above illustration we have taken both the constants m and ¢ as
arbitrary. Now the following two cases may arise.

Case (i) : misarbitrary and c isfixed. Since misthe only arbitrary constantiny
=Mx+c ; .. (1)

Differentiating once we get

d

dx =m . (2)

Eliminating m between (1) and (2)
we get the required differentia
eguation

X dv) +c=0
(dx} y

X
Fig. 8.2 <

Case (ii) : cisan arbitrary constant and mis afixed constant.

y
A

Since ¢ is the only arbitrary
constant differentiating once we get

—Y =m. Clearly c is eiminated from

the above equation. Therefore the
required differential  equation is

dy _
dx ™ Fig. 8.3
Example 8.2: Form the differential equation from the following equations.
(i) y=e*(A+Bx) (ii) y = € (A cos 3x + B sin 3x)
(i) AC+By?=1 (iv) y?=4a(x-a)
Solution :
i) y=e*A+BY
ye 2" = A+ Bx (1)

Since the above equation contains two arbitrary constants, dlfferentlatl ng
twice, Weget yeX_2ye =B

{y'e® -2y e®} -2ye > -2 e‘zx} =0

e_zx{y”—4y +4y} =0 [ e? X2 0]

y'—4y' + 4y = 0istherequired differential equation.
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(i) y=¢€& (Acos3x+Bsin3x)
ye X = Acos3x + Bsin 3x
We have to differentiate twice to eliminate two arbitrary constants
ye X —ye X = —3Asin3x + 3 Bcos3x
y'eX—ye*-—ye *+ye*=—-9(Acos3x+Bsin3x)

ie, eX(y' -2y +y) = —9ye*
=y -2y +10y=0 (-e*%0)

(i) AC+By’=1 . (D)
Differentiating, 2Ax + 2Byy’ = 0 i.e,, AXx+Byy' =0 ...(2
Differentiating again, A + B (yy" + y'2) =0 ...(3
Eliminating A and B between (1), (2) and (3) we get

X y2 -1

X Wy 0 =0= (W +y)x-yy =0

1 yy!/+y!2 0

(iv) y° =4a(x - a) ..
Differentiating, 2yy' = 4a .. (2
Eliminating a between (1) and (2) we get
oo (-4
= W)?-29y +y* =0
EXERCISE 8.1
(1) Find the order and degree of the following differential equations.
. d .
) Gry=x (i) vy +yP=x
i e eye0 N
(i) y"+3y?2+y3= (V) 2+x=1\[Y* g
3
dy o (dy, a2 _ N e s

V) dx2_y+(dx+dx3j =0 () y'=(y-y%°
i)y + ()= x+y) (i) y + ()7 = x(x+y")?

2
(ix) (%) +ng—§‘,+ G (x)  sinx (dx + dy) = cosx (dx — dy)
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(2) Form the differential equations by eliminating arbitrary constants given
in brackets against each

(i) = 4ax {a}
(i) y=ax+bx+c {a, b}
(i) xy=c {c}
S
(iv) ;+b2:l {a, b}
() y=Ae™+Be ™ {A, B}
i) y=(A+Bxe™ {A B}
(vii) y=e>{Ccos2x+ D sin2x) {C, D}
(viii) y=¢e™ {m}
(ix) y= Ae® cos (3x+B) {A, B}
(3) Find the differential equation of the family of straight linesy = mx + %
when (i) mis the parameter ; (ii) a is the parameter ; (iii) a, m both are
parameters

(4) Find the differential equation that will represent the family of all circles
having centres on the x-axis and the radius is unity.

8.4 Differential equationsof first order and first degree:

In this section we consider a class of differential equations, the order and
degree of each member of the classis equal to one. For example,

. _ . . L Xty _

(yy +x=0 (ii)y +xy=snx (|||)y’—X_y (iv)xdy+ydx=0

Solutions of first order and first degree equations:

We shall consider only certain specia types of equations of the first order
and first degree. viz., (i) Variable separable (ii) Homogeneous (iii) Linear.
8.4.1Variable separable:

Variables of adifferential equation are to be rearranged in the form

f1(x) g2(y) dx +f5(x) 91(y) dy =0

i.e., the equation can be written as

f2(x)g1(y)dy = —f1(x) ga(y) dx

g1y) (¥
=50 ¥ = He0 X
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91() f1()
The solution is therefore given by J@ dy=- Jé@ dx+c

Example 8.3: Solve: SX: 1+X+y+xy

Solution : The given equation can be written in the form
Yo ex+y+x)

= Yo e @y

d
- 1—3’3 = (1 +x)dx
Integrating, we have

log(1+y)= x+X§ + ¢, which is the required solution.

Example 8.4: Solve 3e“tany dx + (1 + ) sec’y dy =0
Solution : The given equation can be written in the form

3¢ dx +_2ysec dy=0
1+¢€ tany
Integrating, we have

3log(1+€)+logtany = log c

= log [tany(1+ex)3] =logc

3
= (1+€9 tany = c, which isthe required solution.

1

Note : The arbitrary constant may be chosen likec, ¢, log c, €° etc depending

upon the problem.

. dy | (1=¥°P_
Example 8.5; Solve5 + =0
Xamp dx (1—x2

Solution : The given equation can be written as
1

gy__(l— 2 . dy _ _ dx

a1 - 1-y2  J1-%

Integrating, we have si n’ly +snix=c

= sint [x\/l—y2+y\/1—x2] =c

= x\/l—y2 +y\/1— % = Cisthe reguired solution.
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Example 8.6: Solve: €1/1 - y? dx + <dy=0
Solution : The given equation can be written as
xedx = ——L=

iy ?

Integrating, we have

fxexdx=—f\/—l%y2dy

= xex—fexdx=% fij—/—ttwheret=l—yzsothat—2ydy=dt

= x&-€=5\953)*c
:xe?‘—e?‘:\fwc
=xef-e— \1 yz—c which isthe required solution.

Example 8.7: Solve: (x + y) dx =a’

Solution : Put x+y =z Differentiating with respect to x we get

dy _dz . dy _dz
T+ax =dx "8 dx T ax 1
The given equation becomes va (g_)z( - 1) =a’

dz a° 7
= dx—l—22 or Zerazdz—dx

. 7
Integrating we have, Jﬁ dz = f dx

Z+at-al
22+a dz=x+c=> >|dz=x+cC
= Z— a t 152
m)=x+c (~z=x+Yy)

e, y- atan* = ¢, which isthe required solution.

Q

= X+y-—atan ( a

X
+
—"
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Example 8.8: Solve: xdy=(y + ax° eXA)dx
Solution :

xdy —ydx = ax° e?<4dx
M 23 & dx
X

Integrating we have, fx—d%ﬂ( = f a3 &dx

= fd@):fetdt wheret = x*

= Y:e+c

i.e.,Y = ex4+ ¢ whichisthe required solution.
Example 8.9: Solve: (x2—y)dx + (y2 —X) dy =0, if it passes through the origin.
Solution :
0= y)dx+ (¥~ x) dy = 0
x2dx + yzdy = xdy + ydx
dx + y2 dy = d(xy)
3
S

Since it passes through the origin,c =0

Integrating we have,

3
.. therequired solution is ﬁ =Xy or X +y3 3xy

Example 8.10 : Find the cubic polynomlal in X which attains its maximum
value 4 and minimum value O at X = — 1 and 1 respectively.

Solution : Let the cubic polynomial be y = f(x). Since it attains a maximum at
x=-1andaminimum at x = 1.

%:O ax=-land1l

%: K(x+1) (x—1) = k(*- 1)

Separating the variables we have dy = k(x* — 1) dx
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[y =k JE-1) dx

oo ...(1)

when x=-1, y=4andwhen x=1,y=0
Substituting these in equation (1) we have
2k+3c=12 ; —-2k+3c=0
On solving we have k = 3 and ¢ = 2. Substituting these values in (1) we get
the required cubic polynomial y = X - 3x+ 2.
Example 8.11 : The normal lines to a given curve at each point (X, y) on the
curve pass through the point (2, 0). The curve passes through the point (2, 3).

Formulate the differential equation representing the problem and hence find the
equation of the curve.

Solution :
Slope of the normal at any point P(X, y) =— g;
Slope of the normal AP = Lz —S—);—X—Lz: ydy = (2 — X)dx
Integrating both sides, f = 2x— 5t .. (D
Since the curve passes through (2,3
%:4—g+c:>c=%; putc=g in(1),
)§:2x—X§2+g = Y=4x-x2+5
EXERCISE 8.2
Solve the following :
(1) sec2x dy — sinbx sec’ydx = 0 (2) cosxdy + ye®™dx =0
(3) 6 —-yAdy + (¥ +xyDdx=0 (4 yx2dx +eXdy=0
(5) (R+5x+7)dy+\9+8y—y2dx=0 (6) dX:sin(x+y)
(7 (x+ y)2 —Y = (8) ydx + xdy = ¥ dx if it cuts the y-axis.
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8.4.2 Homogeneous equations :
Definition :
A differential equation of first order and first degree is said to be

i (X,
homogeneousif it can be put in the form %:f@) r %%:figx—ig

Working rulefor solving homogeneous equation :
By definition the given equation can be put in the form

ay _ (Y

=109 e
Tosolve (1) put Yy = vX ... (2
Differentiating (2) with respect to x gives

d dv

B vExgy Ne)

Using (2) and (3) in (1) we have
v+X% =f(v) or X%=f(v) -V

Seperating the variables x and v we have

dx __ dv | t o dv
X T fv)—v 09X TCE vy Ty
y

X"

where cisan arbitrary constant. After integration, replace v by

d
Example 8.12: Solve:a¥=¥+tan¥
Solution : Puty = vx

LHS = v+x% i RHS. =v+tanv

dv dx cosv
" v+X&:v+tanv or + = Snv
Integrating, wehave  logx = logsinv+logc = x=csinv
i.e,x= csin@),
Example 8.13: Solve: (2+/xy — x) dy + ydx =0
dy__ -y

Solution : The given equation is g = 2 — X
Put y=wx
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dv -V Y
LHS =v+Xx dx ’R'H'S'_Z\/T/—l = 1—2\N

v
.V de—l Z\F/
dv_ _2vilv 1-22/v) . . dx
:>de 1 _ 2’\/T/ (V\/T/ dV—2X

, 32 o1y dX
|.e.,(v —2.\/)dv—2X

- —2v 2 2logv =2logx+2logc
V2 = =log (vxc)

_\/;/: log(cy) = cy=e \/_ or yeﬂ

Note: This problem can also be done easily by taking x = vy
Example 8.14: Solve: (x3 + 3xy2)dx + (y3 + 3x2y)dy =0
3
. dy - X432
Solution : = -

Put y = vX

X + 3xy (1+3v2)

dv
LHS—V+XdX,RHS——y3+3X2y V3+3V

) dv _ (1+3v
. V+de—— V3+3\)

dv vi+evi+1

= Xdx = v3+ 3y
_ dox 4 + 12y i
X vieevi+l

Integrating, we have
4logx = —Iog(v4+6v2+1)+logc
log[X*(v* + 6v2 + 1)] = log c
ie, x* (v4+ v + D=c or
Vel +xt =c

Note (i) : Thisproblem can aso be done by using variable separable method.
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Note (ii) : Sometimes it becomes easier in solving problems of the type
d—x—fl(X/y) The following example explains this case
dy ~ F04y) g exampieexp -

Example 8.15:

Solve: (1 + €M)dx + €¥(1 - xly) dy = 0 giventhat y = 1, wherex = 0
Solution : The given equation can be written as

dx _ (x/y—1)e?¥ L
Ay~ 14 .. (D
Put x = vy
ey _ (v-1e
L.H.S. =VHYdy RH.S = 1+
dv _ (v-1)¢"
+V - =
VYT e
dv (" +v)
or yo, =—
Yy 1+¢"
\%
A (S
y e’ +v
Integrating we have, logy = —log (" +v) +logc
or ye'+v)=¢c =>yeY+x=c
Nowy=1whenx=0= 19 +0=c=c=1
sy ex=1
Example 8.16: Solve : xdy — ydx =/ X+ y2 dx
Solution : From the given equation we have
dy _y+[@+y?
ax = X . (D)

Put y = vx

L.H.S.=v+x—dV ; R.H.S.=£V+ 1+
dx 1
d d d
. v+Xd—;:v+\/l+v2 or ?X = 2
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Integrating, we have,log x + logc= log [v + '\/vz + 1]

i.e, xc:v+\/v2+1 = ¥ = y+'\/(y2+X2)

EXERCISE 8.3
Solve the following :

d X—
(1) R f @ g=Yoa (3) 62 +y?) dy = xy dx

4 xza¥=y2+2xygiventhaty=1,whenx=1.

(5) (C+Y) dx+3xydy=0
(6) Find the equation of the curve passing through (1, 0) and which has slope

1+¥ a (x,y).

8.4.3 Linear Differential Equation :

Definition :

A first order differential equation is said to be linear in y if the power of the
terms% and y are unity.

For example% + xy = € islinear in y, since the power of gﬁ is one and

also the power of y is one. If aterm occursin the form y%ﬁ or y2 then it is not

linear, as the degree of each termistwo.

A differential equation of order one satisfying the above condition can
aways be put in the form % + Py = Q, where P and Q are function of x only.
Similarly a first order linear differential equation in x will be of the form

dy X4 Px = Q where P and Q are functions of y only.

The solution of the equation which islinear iny isgiven as

yej Pax_ | er POX Gx + ¢ where ej PAXis known as an integrating factor and it is
denoted by I.F.
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Similarly if an equation is linear in x then the solution of such an equation
becomes

xdPY=lQ [P¥ay+c  (wheredPYisIF)

We frequently use the following properties of logarithmic and exponential
functions:

(i) elogA:A (ii) emlogA:Am (iii) g m |OgA:Aim
Example 8.17 : &Ive:%+ y COt X = 2 COS X
dy

Solution : The given equation is of the form ax TPY=0Q. Thisislineariny.

Here P = cotx and Q = 2 cosx
|E = e[de: e{cotxdx: logsinx — g x
.. Therequired solution is

y (LF) = [(Q(I.F)) dx+ ¢ = y(sinx) = [2cosxsinxdx+¢

= ysinx = [sin2xdx+c

: oS 2X
= ysnx=-—5+

= 2ysinx+cos2x = C

Example 8.18: Solve: (1 - x2) %+ 2xy = X\/(l - x2)

. . .. dy 2x _ X L .
Solution: The given equation is +( Jy_ . Thisislineariny

2X

IF. =P L
AL 1_X2

HereIde=f1 dx=—1log (1 - %)

Therequired solution is

1 X 1 2
y. = x dx. Putl-x"=t = -2xdx=dt
1-% J\/(l_xz) 1-x2

-1 r_
g #27'& 2t +c

138



o Y2,

1-X

y 1
= +
= 1—X2 ’\'1_)(2 ¢
Example 8.19 : Solve: (1 + y2)dx = (tan™ Yy — X)dy

Solution : The given equation can be written asg—); +—1 -0)-(y2 :_1¥t1arl y2 )

Thisislinear in x. Therefore we have
1
Pdy = | ——=dy=tan"
JPdy J“yz y = tan y

L. = o Pdy = oy
Therequired solution is
_ _ _ put tan y =t
Xetanly:fetanly m dy+c Cdy
1+y2 S =dt
1+y?
= xeta”_ly=fet.t dt+c

N e T
= xeta”_1y = eta“_1y (tanly-1)+c
Example 8.20 : Solve: (x + 1) %%— y=e(x+ 1)
Solution : The given equation can be written as% - X_+L1 =e(x+1)
1
x+1

Thisislinear iny. Here |Pdx= —f dx=-1log (x+1)

_ IPdx _ logx+1) __1
S I.F.=e = =3+ 1

. Therequired solutionis
1 1
Y.xq1 = e (x+ )i dx+e
=[efdx + ¢

e Y _
ie, 31 =€+c
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Example 8.21 : Solve: %¥+ 2y tanx = sinx
Solution : Thisislinear iny. Here | Pdx = [2tanx dx =2 log secx

ILE. = eIdez Iogseczxzsec2x
Therequired solution is
y sec?x = J secx . sinx dx
= [tanx secx dx

= ySecX = SECX+C Of Y= COSX+ CCOSPX
EXERCISE 8.4
Solve the following :
dy dy  4x a 1
(1) gx*ty=X (2 dX+x2+ly_(x2+1)2
dx _x _tany dy _
@ Y Tog = 142 (4) (1+°) g+ 2xy = cosx
. d
© E+l=snpd) © E+xy=x
_ .y dy_ o
(7) dx+xdy=e" sec?y dy (8 (y-X) =2

(9) Show that the equation of the curve whose slope at any point is equal to
y + 2x and which passes through the originisy = 2(e* - x - 1)

8.5 Second order linear differential equations with constant

coefficients::

A general second order non-homogeneous linear differential equation with
constant coefficientsis of the form

agy” +ay +ay=X ... (),
where ag, 8, a, are constants ag = 0, and X is afunction of x. The equation
agy" +ay +apy=0, ag#0 .. (2

is known as a homogeneous linear second order differential equation with
constant coefficients,
To solve (1), first we solve (2). To do thiswe proceed as follows :

Consider the functiony = €%, p isaconstant.
Nowy' = pé™ and y" = p?e™
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Note that the derivatives look similar to the function y = €™ itself and if
L(y) = agy” +aqy’ + ay then
L(y) = L(¢”)
= (agp?e™ + aype™ +ay &)
= (agp” + ayp + ap)e™
Hence if L(y) = O then it followsthat (agp? + a;p + ay)e™ = 0.
Since €™ = 0 we get that agp® + a;p +a, =0 ... (3)
Note that €™ satisfies the equation L(y) = agy” + a1y’ + ay =0 then p must
satisfy aop2 + a;p + a, = 0. Moreover if the various derivatives of a function

look similar in form to the function itself then €™ will be an ideal candidate to
solve agy” + a1y’ + agy = 0 . Heresfter we will consider only those set of

differential equations which admits €™ as one of the solutions. Hence we have
the following :

Theorem : If A is a root of aop2 + aup +ay, = 0, then &% is a solution of
agy" +agy +ay=0
8.5.1 Definition : The equation agp® + a;p + a, = 0 is called the characteristic
equation of (2).

In general the characteristic equation has two roots say A, and A,. Then the

following three cases do arise.
Case (i) : Aq and A, arerea and distinct.

A A
In this case, by the above theorem e 1 and e 2 are solutions of (2), and the

A1

. N X AoX . .
linear combination y=cy e = +c,e 2" is also a solution of 2.

X AoX AqX hoX AqX A
For L(y) =ag(cie ~ +cpe 2 )+ ay(cre - +cpe 2 ) +ag(cre © + cpe 2)

A A
= cl(aoklz + kg t ay)e vy cz(aokz2 +ag Ayt a)e 2= €c;.0+c,.0=0.

_ A
and the solution c,e !

X AoX . .
+coe © isknown as the complementary function.
Case (ii) : Ay and A, arecomplex Ay =a+iband A, =a—ib
In this case as the two roots A4 and A, are complex from theory of equations

A1X i i .
e V= @+ ibX - X dbx- 68X (co5 oy + i sin bx) and
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AoX .o
e"?" =™ (cosbx —i sin bx)
Hence the solution

AqX hoX . .
y=cel +ce? =X [(c1+ cp) cosbx +i(cy — ) sinbx]

= é®[Acosbx+Bsinbx] whereA=c; +c,and B = (c; — C)i
and the complementary function is e€® [A cosbx + B sin bx].
Case (iii) :Theroots arereal and equal L1 = A, (say)

Clearly & ¥is one of the solutions of (2). By using the double root property,
we will obtain x¢1¥ as the other solution of (2). Now the linear combination
€% + c,xe" X becomes the solution. i.e., y = (¢; + c,x)€"1 isthe solution or
CF.

The above discussion is summarised as follows :

Givenagy” +aqy +ayy=0

Determine its characteristic equation

agp’+ap+a,=0... (3).

Let 14, A, be the two roots of (3), then the solution of (2) is

A A
Ae T+ Be 2t A1 and A, areredl and distinct
y= 3 € (Acosbx+Bsinbx) if A,y =a+iband 1, =a—ib

A
(A+Bx)e ¥ if Ay = 4y (red)
A and B are arbitrary constants.

General solution :

The genera solution of a linear equation of second order with constant
co-efficient consists of two parts namely the complementary function and the
particular integral.

Workingrule:
To obtain the complementary function (C.F.) we solve the equation

aog—} + al% + ayy = 0 and obtain a solution y = u (say). Then the general
solutionisgiven by y =u + v where v is called the particular integral of (1).

The function u, the complementary function is associated with the
homogeneous equation and v, the particular integral is associated with the term
X. If X =0 then the C.F. becomes the general solution of the equation.
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Note: In this section we use the differential operators

d o & __Y.Dzy_zx

Dzd—xandDE@, ;

8.5.2 Method for finding Particular Integral :
(a) Suppose X is of theform €**, o a constant
D(eax) — ax D2 (eax) - az e(xx
D"(e™) = a"e™, then f(D) €™ =f(a) €™ ... (1)
Note that ﬁ istheinverse operator to f(D).

Operating both sides of (1) by ﬁ we have,
1 1
f(D) X)) e™ = o) f(a)e™

=™ = ﬁf(a)e“x (- f(D) .ﬁ =1)

_ 1 x
then7— f( ) f(D) e
ThustheP.1. isgiven by f(D)e = ﬁ e™* represented symbolically. ...(2)

(2) holds when f(a) = 0.

If f(e) = 0 then D = a is a root of the characteristic equation for the
differential equation f(D) =0 = D - a isafactor of f(D).

Let f(D) = (D — ) 6(D), where 6(a) = 0 then

Lo 1 ax
D€ ~(D-a)6(D)
__1 1
"D-a 6(0()e
1 1
=@D—ae ... (3

Put (Di(x) e =y=(D-a)y=e*
thenye 1 @8 = fex g fadx gy

e, ye ™= f e e dx = y=e"x
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Substituting in (3) we have
S S
fD) e = o) Xe
If further, 6(a) = 0, then D = o isarepeated root for f(D) = 0.
1 X2

= oX _ 2 _oX
Then f(D)e =5 €

X

Example8.22 : Solve: (D% +5D + 6)y =0ory” + 5y + 6y =0
Solution : To find the C.F. solve the characteristic equation
p2+5p+6=0
>pPt+2)(pP+3)=0 = p=-2andp=-3
The C.F.isAe >+ Be >,

Hence the genera solutionis  y = Ae > + Be>* where A and B are
arbitrary constants.

Example 8.23 : Solve: (D% + 6D + 9)y =0
Solution : The characteristic equation is

pP+6p+9=0
ie, (p+3)°=0= p=-3,-3
The C.F. is(Ax + B)e™
Hence the general solutionisy = (Ax + B)e_3x
where A and B are arbitrary constants.
Example 8.24 : Solve: (D2 +D+1y=0
Solution : The characteristic equation is p2 +p+1=0
_—1+1-4 -1 .43
P= 2 =72

L _ 3 .
Hence the general solutionis y =€ X2 [A c0332£X+ Bsin

where A and B are arbitrary constant.
Example 8.25: Solve: (D% — 13D + 12)y = & &
Solution : The characteristic equation is p2 -13p+12=0
= (p-12) (p-1)=0 = p=12andl
The C.F. is Ae!® + Be*

P. ; —2X

Particular integral .= e
0 D2_ 13D + 12
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1 —2x 1 —2x
= e "= e
(-22-13(-2) +12 4+26+12

_i —2X
“a2¢

. 1 _
Hence the genera solutionisy = CF + Pl = y=Ae®+ Be + 45 € B

Example 8.26 : Solve: (D% + 6D + 8)y = & >
Solution : The characteristic equation is p2 +6p+8=0
= (p+4) p+2)=0= p=—-4and-2
The CF.isAe” ¥+ Be &

Particular integral Pl = _ 1 e 1 e
* " p?+eD+8  (D+4(D+2
Sincef(D) = (D + 2) 6(D))
__ 1 xeZ_1lxeX
~0(-2 2
~2X
Hence the general solutionisy = Ae” * + Be > + % x€

Example 8.27 : Solve : (D% — 6D + 9)y = e
Solution : The characteristic equation is p2 -6p+9=0
ie, (p-3°=0= p=33
The C.F. is (Ax + B)e™

Particular integral Pl =

[EEY
@
%
N

X- eX

“(D-32 2

2
Hence the genera solutionisy = (Ax+ B)e3x +5

1
Example8.28 : Solve: (2D%+5D +2)y=e 2~
Solution : The characteristic equation is 2p2 +5p+2=0

_—5++/25-16 -5+3
P= 4 =T 2

145



1
i C2X —2X
TheC.F.is Ae + Be
1 1
1 e_zx 1 e_EX
Particular integral Pl.=—7 = 1
2D°+5D +2 2(D+§)(D+2)
1
—5X 1
1 xe T 1,4 2%
- 1 -3
o3 2
1 i
2% 1ye 2%

Hence the general solutionisy = Ae +Be X+ 3

Caution : In the above problem we see that while calculating the particular
integral the coefficient of D expressed as factors is made unity.

(b) When X isof theform sin ax or cos ax.
Workingrule:

Formula 1: Express f(D) as function of D?, say ¢(D2) and then replace
D? by — a2 If o(— a2) # 0. Then we use the following result.

1 1 1
P.l.=fpycosax = ———5-cosax = 5. COS ax
©) $(0%) o 2°)
1 1 1
For example Pl = 5 —C0S2X=""_5 —C0S2X = —3C0S 2X
D°+1 -2°+1

Formula 2 : Sometimes we cannot form ¢(D2). Then we shall try to get
(D, D2), that is, afunction of D and D In such cases we proceed as follows :
1 COS3x
D2-2D+1
= T:LZD-FI cos3x Replace D? by — 3?
-1 cos3x

For example: P.. =

— Multiply and divide by D — 4
3 4 ply y
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1
ﬂ (D — 4) cos3x

= 5%(D—4) cos 3X

-1
2

= %[D cos 3x — 4 cos 3X] =% [-3sin3x— 4 cos3X]

Formula 3: If ¢(- a2) = 0 then we proceed as shown in the following example:

. _ 1 cosax 1 cosax
Example : Pl = +(0?) D%+ 22
_ 1 cosax
~ (D+ia)(D-ia)
1 R 1 iax
=RP [—(D +ia) (D -ia) }= R.P. [m xe J

jax

= Real part of [%} aso (ia) = 2ia

= %[Real part of i [cosax + i sin ax]]

=X, _Xsinax
= (-SNa) =75
Note: If X=sinax
Formulal: 5. Sin ax
d(=a“)

Formula2 : Same as cos ax method
Formulas : —L— snax = IP[#&&X}—_X
ormula3: D2+a2$|naX— P D+ia D-ia) =54 COsax

Example 8.29 : Solve: (D2 —4)y=sin 2x
Solution : The characteristic equation is p2 -4=0= p=+2
CF. = Ae®+Be?

P.l. = (sin2x) = (sin2x)=—% sin 2x

1
D2_4 ~4-4
L _ 1.
Hence the general solutionisy = C.F.+P.l. = y= Ae® + Be 2X—gstx

Example 8.30 : Solve: (D2 + 4D + 13)y = cos 3x
Solution : The characteristic equation isp? + 4p + 13=0
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—4+~16-52 —-4++-36_-4ti6 .
p= > = 2 = > =—2+4i3

CF. =g¥ (Acos3x+Bsin 3x)

1
P.l. = D2+ 4D + 13 (cos 3x)
1 1
= m(cos 3X) = 2p + 4 (cos3X)
(4D — 4) 4D - 4
= cos3X) = 5 .~ (cos3x
(4D + 4) (4D — 4) (©°3) = Jgp2 15 (09

D-4
160

(cos3x) = 4—10(3 sin 3x + cos 3X)
The genera solutionisy = C.F. + P.I.
y= g (Acos3x+Bsin3x) +4—10(3 sin 3x + cos 3X)

Example 8.31 : Solve (D2 +9)y =sin 3x
Solution : The characteristic equation is p2 +9=0 = p==3i
C.F. = (Acos3x+ Bsin 3x)

Pl = sin 3x

D?+9
_ =X o1 =X
= 0s3x since 3”5 sinax =5, cosax

Hencethe solutionis y = C.F. + P.l.

. . 3
i.e, y=(Acos3x+Bsin3x) —%

(c) When X is of theform x and x?

Working rule : Take the P.I. as ¢y + ¢x if f(X) = x and cg + ¢1x + 02x2 if
f(x) = »°. Since Pl. is dso a solution of (aD® + bD + ¢), = f(x), take
Yy=Cy+CX Ory=cg+CX+ (:zx2 according as f(x) = x or . By substituting
y value and comparing the like terms, one can find cg, ¢, and c.
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Example 8.32: Solve: (D2— 3D +2)y =X
Solution : The characteristic equationis p2— 3p+2=0 =>(pPp-1)(p-2=0
p=1,2
The C.F. is (Ae + Be®)
Let P.I. = C0+ C]_X
.. Cp+ Cxisalso asolution.
. (D?=3D +2) (Cy+ C1X) = X
i.e, (—3c;+2cy +2c;x =X

1
:>2C1:1 Cl :E

R o )_2(+4_1
Hence the genera solutionisy = C.F. + P.I.
y=A+ Bezx+§+%
Example 8.33:
Solve: (DZ— 4D + 1)y = X
Solution : The characteristic equation is p2 —-4p+1=0
_ 4J_r\/216——4:4i22\/§:2i\/§

CF. = s VX | g2 -V3)x

Let P.l. = Gy + CX + Cx°

But P.l. isalso asolution.

5 (D?=4D +1) (Cy+ CX + Cx? ) = X2

i.e, (2c,—4c; +Co) + (- 8Cy + C)X + C =X
c,=1

-8c,+c=0=> ¢, =8

2c, —4c; +cg=0=1¢y=30
Pl.=x%+8x+30

=P
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Hence the genera solutionisy = C.F. + P.I.

y= Ae(2 MELN Be(2 V3, (< + 8x + 30)
EXERCISE 8.5

Solve the following differential equations :

(1) (D?+7D +12)y=¢€* (2) (D?>-4D + 13)y =

(3) (D?+14D +49)y=¢6 "+ 4 (4) (D% - 13D + 12)y = & > + 5¢°

(5) (D2+1)y=0whenx=0,y=2andwhenx=%,y=—2

(6) Z_}_Sgﬁ*- 2y =26 when x = log2, y = 0 and whenx=0, y=0

(7) (D?+3D-4)y=x° (8) (D% - 2D — 3)y = sinx cosx

(9) D% =-9sin3x (10) (D? - 6D + 9) y = x + €~
(11) (D?- 1)y =cos2x - 2sin 2x (12) (D? + 5)y = cos’x
(13) (D?+2D +3)y=sin2x (14) (3D% + 4D + 1)y = 3¢ 3

8.6 Applications:

In this section we solve problems on differential equations which have direct
impact on real life situation. Solving of these types of problems involve

(i) Construction of the mathematical model describing the given situation

(ii) Seeking solution for the model formulated in (i) using the methods

discussed earlier.

[llustration :

Let A be any population at time t. The rate of change of population is
directly proportional to initial populationi.e.,

%? o A ie, %—? = kA wherekiscalled the constant of proportionality

(1) If k>0, we say that A grows exponentialy with growth constant k
(growth problem).

(2) If k < 0 we say that A decreases exponentially with decreasing
constant k (decay problem).

In all the practical problems we apply the principle that the rate of change
of population is directly proportional to the initial population
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. dA dA
i.e, EaA ora=kA

(Here k may be positive or negative depends on the problem). This linear
equation can be solved in three waysi.e., (i) variable separable (ii) linear (using
I.F.) (iii) by using characteristic equation with single root k. In al the ways we
get the solution as A = ce where cisthe arbitrary constant and k is the constant
of proportionality. In general we have to find out ¢ as well as k from the given

data. Sometimes the value of k may be given directly asin 8.35. dd%? is directly

givenin 8.38.
L A
Solution : 4 =
0 d—AA‘: kdt = logA=kt+logc
= A=trloge A= cel
. dA - .
(i) gt — KA=Oislinear in A
ILF.=egX
AsM = fe‘ktOdt+c = Ae=¢
A= ce
(iii) (D-KA=0
Chr. equationisp—-k=0 = p=k
The C.F. is cel
But thereisno P.1.
- A=ce

(iv) In the case of Newton's law of cooling (i.e., the rate of change of
temperature is proportional to the difference in temperatures) we get the
equation as

dT
wKT-9

[T- cooling object temperature, S— surrounding temperature]

dT

TTS:kdt:Iog(T—S):kt+Iogc:>T—S:cekt
kt

= T=S+ce
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Example 8.34 : In a certain chemical reaction the rate of conversion of a
substance at time t is proportional to the quantity of the substance still
untransformed at that instant. At the end of one hour, 60 grams remain and at
the end of 4 hours 21 grams. How many grams of the substance was there
initially?

Solution :
Let A be the substance at time t
dA dA
G OA= G KA = A= celt
Whent = 1, A=60= ce=60 ..
When t = 4, A=21 = ce® =21 .. (2
(1) = c*e* = 60* .. (3)
@ _ 3_so

2 = c” =51 = €=85.15 (by using log)

Initialy i.e.,, whent=0, A=c=285.15gms (app.)

Hence initially there was 85.15 gms (approximately) of the substance.
Example 8.35 : A bank pays interest by continuous compounding, that is by
treating the interest rate as the instantaneous rate of change of principal.
Suppose in an account interest accrues at 8% per year compounded
continuously. Calculate the percentage increase in such an account over one
year. [Take e®~ 1.0833]

Solution : Let A bethe principal at timet
%—f‘aA:%—?: kA 3%?‘:0.08A, sincek = 0.08
= Al) = ceD 08t
Percentage increasein 1 year—A 1 A(_O,)o\ 9., 100
-(AD ), 100- (ﬂ ) _
‘(A(O)_l x100={~";—-1)x100=28.33%

Hence percentage increaseis 8.33%

Example 8.36:

The temperature T of a cooling object drops at a rate proportional to the
difference T — S where S is constant temperature of surrounding medium. If
initially T = 150°C, find the temperature of the cooling object at any timet.
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Solution :

Let T be the temperature of the cooling object at any timet

%Ioc(T S):%—I—k(T S =T-S= celt , where kis negative

— T=S+ceM

Whent=0, T=150 = 150=S+c = ¢=150-S
.. The temperature of the cooling object at any timeis
T =S+ (150 - 9

Note: Sincekisnegative, astincreases T decreases.

It is a decay problem. Instead of k one may take — k where k > 0. Then the
answer is T =S+ (150 — Se X . Again, ast increases T decreases.

Example 8.37 : For a postmortem report, a doctor requires to know
approximately the time of death of the deceased. He records the first
temperature at 10.00 am. to be 93.4°F. After 2 hours he finds the temperature
to be 91.4°F. If the room temperature (which is constant) is 72°F, estimate the
time of death. (Assume normal temperature of a human body to be 98.6°F).

19.4 26.
[mgez% =—0.0426 x 2.303 and |ogeﬁ = 0.0945 x 2.303}

Solution :
Let T be the temperature of the body at any timet

.dT .
By Newton’s law of cooling ot @ (T—-72) since S=72°F

dd—Iz K(T-72) = T-72=ce

or T=72+ce

Att=0,T=934 = c=214] Firstrecordedtime10am.ist=0]

ST =72+21.4€¢
120k 19.4 194)
Whent=120,T=914 = e —214:>k—120Iog 14

= flo (—0.0426 x 2.303)
Let t; be the elapsed time after the death.

Whent=t,; T=986 = 98.6=72+21.4¢"
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ot _1 log (26.6) _= 120 x 0.0945 x 2.303 — 266 min
17k 'FFe\214 0.0426 x 2.303
[For better approximation the hours converted into minutes)
i.e., 4 hours 26 minutes before the first recorded temperature.
The approximate time of death is 10.00 hrs — 4 hours 26 minutes.

.. Approximate time of death is5.34 A.M.

Note: Sinceit is a decay problem, we can even take?j—-tr = — k(T - 72) where

k> 0. Thefinal answer will be the same.

Example 8.38 : A drug is excreted in a patients urine. The urine is monitored
continuously using a catheter. A patient is administered 10 mg of drug at time
t = 0, which is excreted at a Rate of — 3t1/2 mg/h.

(i) What is the general equation for the amount of drug in the patient at
timet >0?

(i) When will the patient be drug free?
Solution :

(i) Let Abethe quantum of drug at any timet
1

Thedrug is excreted at arate of — 32
3

1 3
ie, %—At\ =-32 = A=-22+c
Whent=0, A=10 = ¢c=10
3
At any timet A =10-2t2
3

(i) Fordrugfree, A=0 = 5=t2 = t3=25 = t=2.9 hours.

Hence the patient will be drug freein 2.9 hours or 2 hours 54 min.
Example 8.39:

The number of bacteria in a yeast culture grows at a rate which is
proportional to the number present. If the population of a colony of yeast
bacteria triples in 1 hour. Show that the number of bacteria at the end of five
hours will be 3° times of the population at initial time.

Solution : Let A be the number of bacteriaat any timet

%—?aA:%—fEkA: A=ced
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Initially, i.e., whent = 0, assume that A = Aq
w Ag=cef=c
o A= AN

whent=1, A=3A; = 3A;= A= &=3
Whent =5, A=Age®=Ay)°=3° A,

. The number of bacteria at the end of 5 hours will be 3° times of the

number of bacteria at initial time

)

)

©)

4)

©®)

EXERCISE 8.6

Radium disappears at a rate proportional to the amount present. If 5% of
the original amount disappears in 50 years, how much will remain at the
end of 100 years. [Take Ag asthe initial amount].

The sum of Rs. 1000 is compounded continuously, the nominal rate of
interest being four percent per annum. In how many years will the
amount be twice the original principal? (loge2 = 0.6931).

A cup of coffee at temperature 100°C is placed in a room whose
temperature is 15°C and it cools to 60°C in 5 minutes. Find its
temperature after afurther interval of 5 minutes.

The rate at which the population of a city increases at any time is
proportional to the population at that time. If there were 1,30,000 people
in the city in 1960 and 1,60,000 in 1990 what population may be

anticipated in 2020. [log . G—g) =.2070 ; e®= 1.52}

A radioactive substance disintegrates at a rate proportional to its mass.
When its mass is 10 mgm, the rate of disintegration is 0.051 mgm per
day. How long will it take for the mass to be reduced from 10 mgm to
5mgm. [loge2 = 0.6931]
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9. DISCRETE MATHEMATICS

Discrete Mathematics deals with several selected topics in Mathematics
that are essential to the study of many Computer Science areas. Since it isvery
difficult to cover all the topics, only two topics, namely “Mathematical Logic”,
and “Groups’ have been introduced. These topics will be very much helpful to
the students in certain practical applications related to Computer Science.

9.1. Mathematical Logic : Introduction :

Logic deals with all types of reasonings. These reasonings may be legal
arguments or mathematical proofs or conclusionsin a scientific theory. Aristotle
(384 — 322 BC) wrote the first treatise on logic. Gottfried Leibnitz framed the
idea of using symbols in logic and this idea was redised in the nineteenth
century by George Boole and Augustus D€ Morgan.

Logic is widely used in many branches of sciences and social sciences. It
is the theoretical basis for many areas of Computer Science such as digital logic
circuit design, automata theory and artificial intelligence.

We express our thoughts through words. Since words have many
associations in every day life, there are chances of ambiguities to appear. In
order to avoid this, we use symbols which have been clearly defined. Symbols
are abstract and neutral. Also they are easy to write and manipulate. This is
because the mathematical logic which we shall study is aso called symbolic
logic.

9.1.1 Logical statement or Proposition :

A statement or a proposition is a sentence which is either true or false but
not both.

A sentence which is both true and false simultaneoudly is not a statement,
rather it is a paradox.

Example 1:
(@) Consider the following sentences :

(i)  Chennai isthe capital of Tamilnadu.

(i) Theearthisaplanet.

(iii) Roseisaflower.

Each of these sentences s true and so each of them is a statement.

(b) Consider the following sentences :
(iv) Every triangleisan isoscelestriangle.
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(v) Threeplusfouriseight

(vi) Thesunisaplanet.

Each of these sentences is false and so each of them is a statement.
Example 2 : Each of the sentences

(vii) Switch on thelight.

(viii) Where are you going?

(ix) May God bless you with success.

(X) How beautiful Tgj Mahal il

cannot be assigned true or false and so none of them is a statement. In fact,
(vii) isacommand, (viii) isaquestion (ix) is an optative and (X) is exclamatory.
Truth value of a statement :

The truth or falsity of a statement is called its truth value. If a statement is
true, we say that its truth value is TRUE or T and if it is false, we say that its
truth valueis FALSE or F.

All the statements in Example 1(a) have the truth value T, while al the
statementsin Example 1 (b) have the truth value F.

Simple statements:

A statement is said to be simple if it cannot be broken into two or more
statements. All the statementsin (a) and (b) of Example 1 are simple statements.
Compound statements:

If a statement is the combination of two or more simple statements, then it
is said to be acompound statement.

Example: Itisraining and it iscold.

This is a compound statement and it is a combination of two simple
statements“Itisraining”, “Itiscold”.

Simple statements which on combining form compound statements are
called sub-statements or component statements of the compound statement.

The fundamental property of a compound statement is that its truth value is
completely determined by the truth values of its sub-statements together with
the way in which they are combined to form the compound statement.

Basic logical connectives

The words which combine simple statements to form compound statements
are caled connectives. We use the connectives ‘and’, ‘or’, etc., to form new
statements by combining two or more statements. But the use of these
connectives in English language is not always precise and unambiguous. Hence
it is necessary to define a set of connectives with definite meanings in the
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language of logic, called object language. Three basic connectives are
conjunction which corresponds to the English word ‘and’, ‘disunction’ which
corresponds to the word ‘or’ ‘negation’ which corresponds to the word ‘not’.

woon

We use the symbol “A” to denote conjunction, “v” to denote disunction
and“ ~" to denote negation.

Conjunction :

If two simple statements p and g are connected by the word *and’, then the
resulting compound statement ‘p and q' is called the conjunction of p and g and
iswritten in the symbolic formas‘p A q'.

Example 1 : Form the conjunction of the following simple statements
p : Ramisintelligent.
q . Ravi ishandsome.
pAq : Raminteligent and Ravi is handsome.
Example 2 : Convert the following statement into symbolic form :
‘Ushaand Mala are going to school’.
the given statement can be rewritten as:
‘Ushais going to schoal’, and
‘Malais going to school’.
Let p : Ushaisgoingto school.
g : Malaisgoing to school.
The given statement in symbolic formis p A g.
Rule: (A;) The statement p A g has the truth value T whenever both
p and g have the truth value T.

(Ay) The statement p A q has the truth value F whenever either
p or g or both have the truth value F.

Example : Write the truth value of each of the following statements :
(i) OotyisinTamilnaduand3+4=8
(ii) Ootyisin Tamilnaduand3+4=7
(iii) OotyisinKerdaand3+4=7
(iv) OotyisinKerdaand3+4=8
In (i) the truth value of the statement 3+ 4 =8isF. .. By (A))
(i) hasthe truth value F.
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In (ii) both the sub-statements have truth value T and hence by (Aq). (ii)
has truth value T.

Thetruth values of (iii) and (iv) are F.
Digunction :

If two simple statements p and q are connected by the word ‘or’, then the

resulting compound statement ‘p or q' is called the disjunction of p and g and is
written in symbolic formasp v q.

Example : Form the disjunction of the following simple statements :
p : John is playing cricket.

q : There are thirty studentsin the class room.
pvq : John is playing cricket or there are thirty students in the class
room.

Example : Convert the following statement into symbolic form.
“5isapositiveinteger or asguareisarectangle’.
Let p: 5isapositiveinteger.
g : A squareisarectangle.
The given statement in symbolic formispV g.
Rule: (Ag) The statement p v q has the truth value F whenever both p
and q have the truth value F.
(A4) The statement p v g has the truth value T whenever either p
or g or both have the truth value T.
Example:
(i) ChennaiisinIndiaor~/2isan integer.
(i) Chennaiisin Indiaor-/2isan irrational number.
(iii) Chennai isin Chinaor\/—z isan integer.
(iv) Chennai isin Chinaor~/2isan irrational number.
By (A4), we see that the truth values of (i), (ii) and (iv) are T and by (Ag),
the truth value of (iii) isF.
Negation :
The negation of a statement is generally formed by introducing the word

‘not’ at some proper place in the statement or by prefixing the statement with ‘It
isnot the case that’ or ‘It isfalse that’.

If p denotes a statement, then the negation of p is written as ~p or | p. We
use the symbol ~p to denote the negation of p.
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Rule: (Ag) If the truth value of p is T then the truth value of ~p is F.
Also, if the truth value of p is F, then the truth value of ~p

isT.
Example:
p : All menarewise
~p : Notal menarewise. (or)
~p : Itisnotthe casethat al men are wise (or)
~p : Itisfdsethat all men arewise.

Note : Negation is called a connective athough it does not combine two or
more statements. It only modifies a statement.

EXERCISE 9.1
Find out which of the following sentences are statements and which are not?
Justify your answer.

(1) All natural numbers are integers.
(2) A sguarehasfive sides.
(3) Thesky isblue.
(4) How areyou?
(5) 7+2<10.
(6) The set of rational numbersisfinite.
(7) How beautiful you are!
(8 Wishyou all success.
(9) Give meacup of tea.
(10) 2istheonly even prime.

Write down the truth value (T or F) of the following statements :
(11) All the sides of arhombus are equal in length.
(12) 1++[8isanirrational number.

(13) Milk iswhite.

(14) The number 30 has four prime factors.

(15) Parisisin France.

(16) Sinxisan even function.

(17) Every sguare matrix is non-singular.

(18) Jupiter isaplanet.

(19) The product of acomplex number and its conjugate is purely imaginary.
(20) Isoscelestriangles are equilateral.
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(21) Form the conjunction and the disjunction of
(i) p : Anand reads newspaper, g : Anand plays cricket.

(i) p:lliketea g : | likeice-cream.

(22) Let pbe“Kamalais going to school” and g be “There are twenty students
in the class “. Give a simple verbal sentence which describes each of the
following statements :

@) pvag (i)pag (ii)~p (v)~q (V~pvq

(23) Trandate each of the following compound statements into symbolic

form:

(i) Roseisred and parrotisabird.

(ii) Suresh reads ‘Indian Express’ or ‘ The Hindu’.
(iii) It isfalse that the mangoes are sweet.

(iv) 3+2=5and Gangesisariver.

(v) Itisfasethat sky isnot blue.

(24) If p stands for the statement “ Sita likes reading” and q for the statement
“Sitalikes playing’ what does~p A ~ q stand for?

(25) Write negation of the each of the following statements :

(i) ~/Sisanirrational number.

(ii) Mani issincere and hardworking.

(iii) Thispictureisgood or beautiful.
9.1.2 Truth tables:

A table that shows the relation between the truth values of a compound
statement and the truth values of its sub-statements is called the truth table. A
truth table consists of rows and columns. The initial columns are filled with the
possible truth values of the sub-statements and the last column is filled with the
truth values of the compound statement on the basis of the truth values of the
sub-statements written in the initial columns. If the compound statement is
made up of n sub-statements, then its truth table will contain 2" rows.

Example 9.1 : Construct the truth table for ~p

Solution: The statement ~p consists of only one simple statement p. Therefore,

its truth table will contain 21(: 2) rows.

Also we know that if p has the truth value T then ~p has the truth value F
and if p has the truth value F, then ~p has the truth value T. Thus the truth table
for ~pisasgiven below :

Truth tablefor ~p

p ~p
T F
F T
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Example 9.2 : Construct the truth table for p v (~p).
Solution: The compound statement pv (~p) consists of only one single
statement p. Therefore its truth table will contain 21(= 2) rows.

In the first column, enter al possible truth values of p.

In the second column, enter the truth values of ~p based on the
corresponding truth values of p. Finaly, in the last column, enter the truth
values of p v (~p), using (Ay).

Truth tablefor pv(~p)

P ~p_ | pv(~P)
T F T
F T T

Example 9.3 : Construct the truth table for p A g.

Solution: The compound statement p A g consists of two simple statements p
and g. Therefore, there must be 22(= 4) rows in the truth table of p A q. Now
enter all possible truth values of statements p and g namely TT, TF, FT and FF
in the first two columns of the truth table.
Using (A7) and (A,), enter the truth values of p A g in the final column
based on the corresponding truth values of p and g in the first two columns.
Truth tablefor paq

P q pAq
T T T
T F F
F T F
F F F

Note : Similarly, by using (Ag) and (A,) we can construct the truth table for
p v q, asgiven below :
Truth tablefor pv q

P q pvg
T T T
T F T
F T T
F F F
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Example 9.4 : Construct the truth table for the following statements :

(i) ((~p) v (~a) (i) ~((~p) ~ Q)

(if) (p v 0) A (~ ) (V) ~((~P) A (~ )
Solution:
@) Truth tablefor ((~p) v (~ Q))
p q ~p ~q | (~p)v(~q)
T T F F F
T F F T T
F T T F T
F F T T T
(i) Truth tablefor ~ ((~p) A Q)
p q ~p ~prq | ~((~P)AQ)
T T F F T
T F F F T
F T T T F
F F T F T
(iii) Truth tablefor (pv Q) A (~Q)
P q pvq ~q (Pva) A (=9
T T T F F
T F T T T
F T T F F
F F F T F
(iv) Truth tablefor ~ ((~ p) A (~Q))
p q ~p | ~q CPAa) | ~(~P)A(~9)
T T F F F T
T F F T F T
F T T F F T
F F T T T F

Example 9.5 : Construct the truth tablefor (p A Q) v (~T)

Solution: The compound statement (p A Q) v (~ r) consists of three simple
statements p, q and r. Therefore, there must be 23(= 8) rowsin the truth table of
(p A Q) v (~r). The truth value of p remains at the same value of T or F for each
of four consecutive assignments of logical values. The truth value of q remains
a T or F for two assignments and that of r remains at T or F for one
assignment.
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p q r pPAqg ~r (PAQ) Vv (~r)
T T T T F T
T T F T T T
T F T F F F
T F F F T T
F T T F F F
F T F F T T
F F T F F F
F F F F T T
Example 9.6 : Construct the truth tablefor (pv ) A T
Solution:
p q r pvdg | (Pvaar
T T T T T
T T F T F
T F T T T
T F F T F
F T T T T
F T F T F
F F T F F
F F F F F
EXERCISE 9.2
Construct the truth tables for the following statements :
(1) pv(~9 (2 ~p)r(~0)
3 ~(Pva 4 (pvav(~p
5B (Pra)v(~a) 6) ~(Pv(~09)
() Pra)vI~(PAa)] 8 (Prg)v(~a)
9 (Pvavr (10) (pAa)vr

L ogical Equivalence:

Two compound statements A and B are said to be logicaly equivaent or
simply equivalent, if they have identical last columnsin their truth tables.

In this case we write A= B.
Example 9.7 : Show that ~ (pv q)=(~p) A (~Q)
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Solution:
Truth tablefor ~ (pv Q)

p q pvg | ~(pva)

T T T F

T F T F

F T T F

F F F T

Truth tablefor ((~p) A (~ Q)

p q ~P | ~q | (=PA(~9)
T | T F | F F
T F F T F
F T T F F
F F T T T

Thelast columnsareidentical. .. ~(pv q)=((~p) A (~ Q)
Negation of a negation :

Negation of a negation of a statement is the statement itself. Equivalently
wewrite ~(~p)=p

p ~p | ~(~p)
T F T
F T F

In the truth table, the columns corresponding to p and ~ (~ p) are identical.
Hence p and ~ (~ p) are logically equivalent.

Example 9.8 : Verify ~ (~ p) = p for the statement p : the sky is blue.
Solution:

p : Thesky isblue

~p : The sky isnot blue

~ (~p) : Itisnot the case that the sky isnot blue or

It isfalse that the sky is not blue or
The sky isblue
Conditional and bi-conditional statements:

In Mathematics, we frequently come across statements of the form “If p
then q”. Such statements are called conditional statements or implications. They
are denoted by p — g, read as‘p implies q'. The conditional p — qisfase only
if pistrueand qisfase. Accordingly, if pisfasethen p — qistrue regardiess
of the truth value of q.
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Truth tablefor p—q

P q P-4
T T T
T F F
F T T
F F T

If p and q are two statements, then the compound statement p — g and
g — piscaled abi-conditional statement and is denoted by p <» q, read as p if
and only if g. p <> g has the truth value T whenever p and g have the same truth

values; otherwiseitisF.

Truth tablefor p<> q

P q peq
T T T
T F F
F T F
F F T

9.1.3 Tautologies:

A statement is said to be a tautology if the last column of its truth table

containsonly T, i.e., itistruefor al logical possibilities.

A statement is said to be a contradiction if the last column of its truth table

containsonly F, i.e, itisfalsefor al logical possibilities.

Example9.9: (i) p v (~ p) isatautology. (ii) p A (~ p) isacontradiction

Solution:
@) Truth tablefor pv (~ p)
p ~P pv(~p)
T F T
F T T
Thelast column containsonly T. .. p v (~p) isatautology.
(i) Truth tablefor p A (~ p)
p ~P PA(~P)
T F F
F T F

Thelast column containsonly F. .. p A (~p) isacontradiction.
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Example 9.10: (i) Show that ((~ p) v (~ Q) v p isatautology.
(ii) Show that ((~ ) A p) A qisacontradiction.

Solution:
0) Truth tablefor (~p)v(~qQ) vp
Pl a|~p|~ad|Pv(ia | (=pVv(Egvp
T| T|F|F F T
T F F T T T
F T T F T T
F F T T T T
Thelast column containsonly T. .. ((~ p) v (~ q)) v p isatautology.
(i) Truth tablefor (~q) Ap) A Q
p q [~d| ~aap |(~ra)Ap)Arq
T| T F F F
T F T T F
F T F F F
F F T F F

Thelast column containsonly F. .. ((~ Q) A p) A qisacontradiction.

Example 9.11 : Use the truth table to determine whether the statement
((~p) v a) v (pA (~ Q) isatautology.

Solution:

Truth tablefor (~p) v ) v (pA (~Q)
PlAa|~P|~q| ~p)va | pAa(~0) | (=P VvV (PA(~Q)
T|T| F F T F T
T|F| F T F T T
FIT| T F T F T
F|F T T T F T

The last column contains only T. .. The given statement is atautology.
EXERCISE 9.3

(1) Use the truth table to establish which of the following statements are

tautologies and which are contradictions.
(i) (~PArdAap

@iy PA @) v((~p)va)
V) PAGP)IA((~a) AP)

(i)
(iv)
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(2) Showthatp—>qg=(~p)vq

(3) Showthat p<> q=(p—a) A (q— p)

(4) Showthatp<>q=((~p)va A((~a)vp
(5) Showthat ~(p A Q)= ((~p) v (~a))

(6) Show that p — g and q — p are not equivalent.
(7) Show that (p A ) — (p v q) isatautology.

9.2 Groups:

9.2.1 Binary Operation :

We know that the addition of any two natural numbers is a natural number,
the product of any two natural numbers is also a natural number. Each of these
operations associates with the two given numbers, a third number, their sum in
the case of addition, and their product in the case of multiplication. In this
section we are going to deal with the notion of a binary operation or a binary
composition on a set which is nothing but a generalisation of the usual addition
and usual multiplication on the number systems.

Definition :

A binary operation * on a non-empty set Sis arule, which associates to
each ordered pair (a, b) of elements a, bin San element a * b in S Thus a
binary operation * on Sisjustamap, * : Sx S— Shy (a,b) > a* b.

Where we denote by a * b, the image of (a, b) in Sunder *.

From the definition we see that, if * is a binary operation on S then
a,beS=a*besS

In this case, we also say that Sis closed under *. This property is known as
the “closure axiom™ or “closure property”.

List of symbolsused in thischapter :

- Theset of dl natural numbers.

The set of al integers.

- Theset of al non-negative integers (whole numbers).
- Theset of al evenintegers.

- Theset of all odd integers.

- Theset of al rational numbers.

- Theset of al real numbers.

- Theset of all complex numbers.

- Theset of al non-zero rational numbers.
The set of all non-zero real numbers.

- Theset of al non-zero complex numbers.
- for every

- thereexists

- such that

=SNZ

vV Oo OxomOoom
: |
et
SRS
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[llustrative examples:
The usual addition + is abinary operation on N.
Sincea,be N=a+be N.i.e, Nisclosed under +.
But the usual subtraction isnot binary on N. Since 2,5 € N,
but2-5=-3¢N.

.. Nisnot closed under subtraction.

At the same time, we see that — is a binary operation on Z. From this we
see that, an operation becoming binary or not binary depends on the set. The
following table gives which number systems are closed under the usua
algebraic operations, namely addition, subtraction, multiplication and division

denoted by +, —, ., + respectively.
ber Systemg
. N z Q R C Q-{0} | R-{0} | C—{0}
Operations
) ) ) . . not not not
+ binary | binary | binary | binary | binary binary | binary | binary
not not not not

- binary | binary | binary | binary

binary binary | binary | binary

binary | binary | binary | binary | binary | binary | binary | binary

. not not not not not bina binar binar
' binary | binary | binary | binary | binary oy y y

Apart from the usual algebraic operations, some new operations on the
number systems can aso be defined. For example, consider the operation * on

N defined by a* b= aP.
Itisclearthat * isbhinaryonN, ~a,be N= a* b=aleN.
Some mor e facts about binary operations:
(1) Let the set Sbe R or any subset of real number system.
Define* as (i) a* b=minimum of {a, b}
(i) a* b=maximum of {a, b}
(i) a*b=a
(iv) a*b=b

All the above operations (*) are binary operations on the corresponding
sets.
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2 (N*)
* isdefined asa* b = ab + 5. Since ab and 5 are natural numbers,
ab + 5isalso anatural number. .. * isabinary operation on N.
On the other hand, the operation * defined by a* b =ab — 5 is not binary
onNbecause2* 1=(2)(1)-5=-3¢N.
(3) (Z,*),where* isdefined by, a* b= a° isnot abinary operation on z.
Sincetekea=2,b=-1

b_o1_1

a=2 —ZEZ

Note that * is also not abinary operaton on R— {0}

bma&nmeaz—Lbz% ab=(- 1Y% ¢ R-{0}
4 (R¥)

Definea* b= a+b+ab
Clearly * is a binary operation on R since a + b and ab are real numbers
and their sum isalso areal number.

®) (O,+)

Addition is not a binary operation on the set of odd integers, since addition
of two odd integersis not odd.

© (G, )

Multiplication is a binary operation on the set of odd integers. Since
product of two odd integersis an odd integer.

(7) Matrix addition is a binary operation on the set of m x n matrices. Since
sum of two mx n matricesis again an mx n matrix.

(8) Matrix addition is not a binary operation on the set of n x n singular
matrices as well as on the set of n x n non-singular matrices. Because, sum
of two non-singular matrices need not be non-singular and sum of two
singular matrices need not be singular.

(9) Matrix multiplication is a binary operation on the set of singular matrices
aswell as on the set of non-singular matrices.

(10) Cross product is a binary operation on the set of vectors, but dot product is
not a binary operation on the set of vectors.

Multiplication table for a binary operation

Any binary operation * on afinite set S={a, a, ... a,} can be described by
means of multiplication table. This table consists of ‘n’ rows and ‘n’ columns.

Place each element of Sat the head of one row and one column, usually taking

them in the same order for columns as for rows. The operator * is placed at the

left hand top corner. Thenx n= n spaces can befilled by writing & * g inthe

space common to the ith row and the jth column of the table.
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al 8™ g

This table is aso known as Cayley’s table or composition table. In the
next section we will see that these composition tables are very much helpful in
exhibiting finite groups.

9.2.2 Groups:

Given any non-empty set S, the possibility of combining two of its
elements to get yet another element of Sendows Swith an algebraic structure. A
non-empty set S together with a binary operation * is called an algebraic
structure. Group is the simplest of al algebraic structures. It is the one
operational algebraic system. The study of groups was started in the nineteenth
century in connection with the solution of equations. The concept of group
arises not only in Mathematics but also in other fields like Physics, Chemistry
and Biology.

Definition :

A non-empty set G, together with an operation * i.e, (G, *) issaidto bea

group if it satisfies the following axioms

(1) Closureaxiom . aabeG=a*beG
(2) Associativeaxiom : Va,b,ceG,(a*b)*c=a*(b* ¢
(3) Identity axiom . Thereexistsanelemente e G

suchthata* e=ze*a=a,VaeG.

(4) Inverseaxiom . Va e G there exists an element a *eG such
that al*a=a*al=e
eis called the identity element of G and aLiscaled theinverse of ain G.
Definition (Commutative property) :
A binary operation * on aset Sis said to be commutative

ifa*b=b*aVvabe$S
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Definition :

If a group satisfies the commutative property then it is called an abelian
group or acommutative group, otherwiseit is called a non-abelian group.
Note (1) :

If the operation * is a binary operation, the closure axiom will be satisfied
automatically.
Note (2) :

We shall often use the same symbol G to denote the group and the
underlying set.
Order of agroup :

The order of a group is defined as the number of distinct elements in the
underlying set.

If the number of elements is finite then the group is called a finite group
and if the number of elements is infinite then the group is called an infinite
group. The order of agroup G is denoted by o(G).

Definition :

A non-empty set S with an operation * i.e, (S *) is said to be a
semi-group if it satisfies the following axioms.

(1) Closureaxiom . abeS=a*beS

(2) Associativeaxiom : (a*b)*c=a*(b*c),VabceS
Definition :

A non-empty set M with an operation * i.e., (M, *) issaid to be amonoid if
it satisfies the following axioms :

(1) Closureaxiom . abeM=a*beM
(2) Associativeaxiom : (a*b)*c=a* (b*c)Va b,ceM
(3) Identity axiom . Thereexistsanelementee M

suchthata* e=e* a=a, Vae M.
(N, +) is a semi-group but it is not a monoid, because the identity element
OeN.
b

(N, *) where * is defined by a * b = a” is not a semi-group, because,
consider (2*3)*4:23*4:84:212and
2% (3% 4) =2*3"=2+g1=2%
(2% 3)*422* (3* 4)i.e, associative axiom is not satisfied.
(Z, ) isamonoid. But it is not a group, because, the inverse axiom is not
satisfied. (5 € Z, but% ¢ 2). (Z, +) and (Z, .) are semi-groups as well as

monoids. From the definitions, it is clear that every group is amonoid.
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Example 9.12 : Provethat (Z, +) isan infinite abelian group.
Solution:
(i) Closureaxiom . Weknow that sum of two integersis again an
integer.
(ii) Associativeaxiom : Additionisaways associativein Z
i.e,Va b ceZ (a+b)+c=a+(b+c)
(iii) Identity axiom : Theidentity element O € Z and it satisfies
O+a=a+0=a VvVaeZ
Identity axiom istrue.
(iv) Inverseaxiom . Foreveryae Z 3anelement—a e Zsuch
that —a+a=a+(-a)=0
.. Inverseaxiomistrue. ... (Z, +) isagroup.
(V) VabeZ atb=b+a
.. additionis commutative. .. (Z, +) isan abelian group.
(vi) SinceZisaninfinite set (Z, +) isinfinite abelian group.
Example 9.13 : Show that (R — {0}, .) is an infinite abelian group. Here ‘.
denotes usual multiplication.
Solution:

(i) Closureaxiom . Since product of two non-zero real numbersis
again anon-zero areal number.

ie,VabeRa.beR

(i) Associativeaxiom : Multiplicationisaways associative in R— {0}
iie,a.(b.co=(a.b).c Va,b,ce R-{0}
.. associative axiom istrue.

(iii) 1dentity axiom . The identity element is 1 € R — {0} under
multiplication and
l.a=a.l=a,VaeR-{0}

.. ldentity axiomistrue.

(iv) Inverseaxiom . Vae R—{O},%l € R-{0} suchthat

a .%=%. a =1 (identity element). .. Inverse
axiomistrue. .. (R-{0},.)isagroup.
(v) VabeR-{0},a.b=b.a

.. Commutative property istrue. .. (R—{0},.) isan abelian group.
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(vi) Further R — {0} is an infinite set, (R — {0}, .) is an infinite abelian
group.
Example 9.14 : Show that the cube roots of unity forms a finite abelian group
under multiplication.

Solution: Let G ={1, , ®’}. The Cayley’stableis

1 o |u2 | Fromthetable, we seethat,
(i) al the entries in the table are members of G.
1 |1 o | So, the closure property is true.

o o |2 |1 (i) multiplication is always associative.
(iii) the identity element is 1 and it satisfies the
o |o? |1 |o identity axiom.
(iv) Theinverseof 1is1
Theinverseof ® is®

theinverse of o2 is ®
and it satisfies the inverse axiom aso. ... (G, .) isagroup.
(v) the commutative property isalso true.
. (G, .) isan abelian group.
(vi) Since Gisafiniteset, (G, .) isafinite abelian group.
Example 9.15 : Prove that the set of all 4™ roots of unity forms an abelian group
under multiplication.
Solution: We know that the fourth roots of unity are 1, i, — 1, —i.
Let G={1,i,—1,—i}. TheCaylely'stableis

2

1 | =11 i —i | Fromthetable,
1 1 =11 i | =i | (@) theclosureaxiomistrue.
~11-1] 1 | =i | i |[(i) multiplication is always associative in C and
i i 1 Zil-11 1 hencein G.
(iii) the identity element is 1 € G and it satisfies
-1 the identity axiom.
(iv) theinverseof lisl;iis—i;—1is—1;and—iisi. Further it satisfies

the inverse axiom. hence (G, .) isagroup.
(v) From the table, the commutative property is also true.
. (G, .) isan abelian group.
Example 9.16 : Provethat (C, +) isan infinite abelian group.
Solution:
(i) Closure axiom : Sum of two complex numbers is always a complex number.
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ie, 2,eC=>2z+2¢cC

Closure axiom istrue.
(ii) Associative axiom : Addition is always associativein C

e, (1+)+z3=71+(+23) V27,2,23€C

.. Associative axiom is true.
(iii) Identity axiom :

Theidentity elemento=o0+ioe Cando+z=z+0=2zVzeC

.. |dentity axiom istrue.
(iv) Inverseaxiom : For every z e C there existsaunique — z € C such that

z+(-2=-z+z=0. Inverseistrue. .. (C, +) isagroup.
(v) Commutative property :

V,eC, 1+=2+t7

the commutative property is true. Hence (C , +) is an abelian group.

Since Cisaninfinite set (C, +) isan infinite abelian group.
Example 9.17 : Show that the set of all non-zero complex numbersis an abelian
group under the usual multiplication of complex numbers.
Solution:

(i) Closure axiom : Let G = C — {0} Product of two non-zero complex
numbersis again a non-zero complex number.

.. Closure axiom istrue.
(ii) Associative axiom :

Multiplication is always associative.

.. Associative property istrue.
(iii) ldentity axiom :

1=1+io0e G, listheidentity elementand1.z=z.1=2V ze G.

.. ldentity axiomistrue.
(iv) Inverseaxiom :

Letz=x+iy e G.Herez= 0 = xandy are not both zero.
X +YP 20
1 1 X—iy _ o Xx—iy _ X (=Y
ZTXHY T (XHiy) (= 1Y) Ry Ry I(x2+y2) €G

Furtherz.% = % z=1.. zhastheinverse% e G

Thusinverse axiom is satisfied. .. (G, .) isagroup.
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(v) Commutative property :
71 z,=(a+ib) (c+id) = (ac - bd) +i (ad + bc)
= (ca—db) +i(da+ch)=227

.. It satisfies the commutative property.

. G is an abeian group under the usua multiplication of complex
numbers.
Note : Here the number O is removed, because O has no inverse under
multiplication. We can aso show that Q — {0}, R — {0} are abelian groups
under multiplication. But Z — {0} is not a group under multiplication.

o 1
~7eZ-{0} Whlleltsmverse7 ¢ Z—-{0}

Note : While verifying the axioms, follow the order given in the definition. If one
axiom fails, stop the process a that stage. There is no use in continuing further.

The following table shows which number systems are satisfying the
axioms of agroup in the order for a particular operation.

* N E z Q R o Q-{0} R-{0} Cc-{0}
+ | Semi group group group group group not closed | not closed | not closed
group
monid | semi-group | monoid monoid monoid monoid group group group
- | not not not not not not not closed |notclosed | not closed

closed | associative | associative | associative | associative |associative

+ | not not closed | notclosed | notclosed | notclosed | notclosed not not not
closed associative |associative |associative

Example 9.18 : Show that (Z, *) is an infinite abelian group where * is defined
asa*b=a+b+2

Solution:

(i) Closureaxiom : Sincea, band 2 areintegersa + b + 2 isaso an integer.

.a*bez Vabez

Thus closure axiom is true.

(if) Associative axiom :

Leta,b,ce G
(@a*b)*c=(@a+b+2)*c=(a+b+2)+c+2=za+b+c+4
a*(b*c=a*(b+c+2)=za+(b+c+2)+2=a+b+c+4

= (@*b)y*c=a*((b*c)
Thus associative axiom is true.
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(iii) ldentity axiom :
Let e be the identity element.
By the definitionof e, a* e=a
By the definitionof *,a*e=a+e+2
= ate+2=a
=e=-2
— 2 € Z. Thusidentity axiom istrue.
(iv) Inverseaxiom:

Leta e G and a ! betheinverse element of a

By the definition of al a*al=ze=-2

loa+al+2

By the definitionof *,a* a”
= a+tal+2=-2

1

= a =-a-4
Clearly—a—4 e Z .. Inverseaxiomistrue. .. (Z, *) isagroup.
(v) Commutative property :
Leta,be G
a*b=a+b+2=b+a+2=b*a .. *iscommutative.

2 (Z, *) is an abelian group. further, Z is an infinite set. The group is an
infinite abelian group.

Example 9.19 : Show that the set of al 2 x 2 non-singular matrices forms a

non-abelian infinite group under matrix multiplication, (where the entries

belong to R).

Solution:

Let G bethe set of all 2 x 2 non-singular matrices, where the entries belong
toR.

(i) Closure axiom : Since product of two non-singular matrices is again
non-singular and the order is 2 x 2, the closure axiom is satisfied.
i.,e,ABe G=>ABeG.

(i) Associative axiom : Matrix multiplication is always associative and hence
associative axiom istrue.i.e,, A(BC)=(AB)CV A, B,C e G.

0

1
(iii) Identity axiom : The identity element is |, = [ } e G and it satisfies

01
the identity property.
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(iv) Inverseaxiom : theinverse of A € G, existsi.e. AL exists and is of order

2 x 2 and AA L = AA = I. Thus the inverse axiom is satisfied. Hence the
set of al 2 x 2 non-singular matrices forms a group under matrix
multiplication. Further, matrix multiplication is non-commutative (in
general) and the set contain infinitely many elements. The group is an
infinite non-abelian group.

Example 9.20 : Show that the set of four matrices

10 -10 10 -1 0
) ; , form an abelian group, under
0 0 1 - 0 -

multiplication of matrices.

Solution:
Let | = , A= , B = , C= and let
0 0 0 -1 0 -
G={I,A B, C}

By computing the products of these matrices, taken in pairs, we can form
the multiplication table as given below :

A
I A

I

C

. B

| B
A A C
B I

—|>mO0

Cc Cc B A

(i) All the entries in the multiplication tables are members of G. So, G is
closed under . .. Closure axiomistrue.

(if) Matrix multiplication is always associative

(iii) Since the row headed by | coincides with the top row and the column
headed by | coincides with the extreme left column, | is the identity

element in G.

(iv) I.1=1 = listheinverseof |
A.A=1 = Aistheinverseof A
B.B=1 = Bistheinverseof B
C.C=1 = Cistheinverseof C

From the table it is clear that . is commutative. .. G is an abelian group
under matrix multiplication.
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X X
Example 9.21 : Show that the set G of all matrices of the form (x x) where

x € R—{0}, isagroup under matrix multiplication.
Solution:

X X
Let G = {(x X)/XE R—{O}} we shall show that G is a group under

matrix multiplication.
(i) Closureaxiom :

X X
I
X y ¥y

(2 2y
AB_(ny 2xy)€G' (~x#0,y=0 = 2xy=0)

i.e., Gisclosed under matrix multiplication.
(ii) Matrix multiplication is always associative.

e e
(iii) Let E=(e e)eGbesuchthatAE=Afore\/eryAe G.

e=n= e d= )

2xe 2xe X X 1
= = = 2xe=x=e=5 (v x=0)

2xe 2xe X
12 12
ThusE = 12 U € Gissuchthat AE=A, forevery Ae G

We can similarly show that EA = Afor every A € G.
.. Eistheidentity element in G and hence identity axiom is true.

(iv) Suppose Al= @/ 3 e Gissuchthat A™A =E

2xy 2xy}_[1/2 1/2} 1 1
v2 1] T PYT27Y T

Then we ha\/e[
2xy  2xy.

4 [U4x U4x _ 1
AT = Uax Udx e Gissuchthat A" "A=E

Similarly we can show that A Al=E . Alistheinverseof A.
.. Gisagroup under matrix multiplication.
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Note : The above group is abelian since AB = BA. But in general matrix
multiplication is not commutative.
Example 9.22 : Show that the set G = {a+b~/2 / a,be Q} is an infinite
abelian group with respect to addition.
Solution:
(i) Closureaxiom :
Letx,ye G. Thenx=a+b+/2, y=c+d~/2; a,b,c,de Q.
x+y=(a+b2)+(c+dv2)=(a+c)+(b+d)2eG,
since (a + c) and (b + d) are rational numbers.
.. Gisclosed with respect to addition.
(ii) Associative axiom : Since the elements of G are al real numbers, addition
isassociative.
(iii) Identity axiom :
Thereexists0 =0+ 04/2 € Gsuchthat for all x=a+ /2 € G,
x+0 = (a+by2) + (0+0+2)
—a+ b\/é =X
Similarly, we have 0 + x = x. .. 0 is the identity element of G and
satisfies the identity axiom.
(iv) Inverseaxiom :
For eachx=a+ /2 € G, thereexists—x=(—a) + (- b)\2 € G
suchthat  x+(-x) = (a+b~2) + ((- a) + (- b)\/2)
= (a+(-a)+(b+(-b)v2=0
Similarly we have (- x) +x=0
5. (- a) + (- b) /2 is the inverse of a + b\[2 and satisfies the inverse
axiom. .. G isagroup under addition.
(v) Commutative axiom :
x+y=(a+0)+(b+dn2=(c+a)+(d+bn2
= (c+ D) + (a+ by2)
=y+x, foralx ye G. .. Thecommutative property istrue.
.. (G, +) isan abelian group. Since G is infinite, we see that (G, +) isan
infinite abelian group.
Example 9.23 : Let G be the set of al rational numbers except 1 and * be
definedon Gbya* b=a+ b - abfor adl a, b € G. Show that (G, *) is an
infinite abelian group.
Solution: Let G=Q - {1}
Leta, b e G. Thenaand b arerational numbersanda =1, b= 1.
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(i) Closure axiom: Clearly a* b=a+ b — abisarationa nhumber. But to
provea* b € G, wehaveto provethata* b= 1.
On the contrary, assumethat a* b =1 then
atb-ab=1
= b-ab=1-a
=>b(l-a=1-a
=>b=1 (~a=zl 1-a=0)
Thisisimpossible, because b = 1. ... Our assumption iswrong.
sa*b#landhencea* b e G.
.. Closure axiom istrue.
(ii) Associative axiom :
a*(b*c

a* (b+c-hc
a+((b+c-—bc)—a(b+c-hbc)
at+b+c—-bc-ab-ac+abc
(@a*b)*c=(a+b-ab)*c
=(atb-ab)+c—(a+pb-ab)c
=a+b+c-ab-ac-bc+abc
~a*(b*c)=(@*b)*cvabceG
.. Associative axiom is true.
(iii) Identity axiom : Let e bethe identity element.
By definitionof e, a* e=a
By definitionof *, a*e=za+e—ae
= ate-ae=a

=el-a=0
= e=0snce a1l
e=0eG

.. |dentity axiom is satisfied.
(iv) Inverseaxiom :
Leta L betheinverseof a e G.
By the definition of inverse, a* al=ze=0
By the definition of *,a* al=za+alt-aa !
— a+at-aal=0
:>a’1(1—a) =-a

-1 a
=> a =
a_

1€ Gsinceaz1

.. Inverse axiomis satisfied. ... (G, *) isagroup.
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(v) Commutative axiom :
Forany a, b e G, a*b=a+b-ab
=b+a-ba
=b*a
.. * iscommutative in G and hence (G, *) is an abelian group. Since G is
infinite, (G, *) isaninfinite abelian group.
Example 9.24 : Prove that the set of four functionsfy, f,, f3, f4 on the set of non-
zero complex numbers C — {0} defined by

19 =z (29 = -2z f3(2 = :—ZL and fy(2) = - % vV ze C-{0} formsan
abelian group with respect to the composition of functions.
Solution: Let G ={fy,f,, 3 g}
(f1°f) @ = 11(h(@) =19
flofl = fl
fzo fl = f2 , f30f1 = f3, f4of1 = f4
Agan  (f°fy) (2 = fo(fx(2) = fa-2) =-(-2) =z=1y(2
f20f2 = fl
S|m||ar|y f20f3 = f4, f20f4 = f3

(1) (D = 13 (@) = 3 D = -3 = 1,2)
f30f2 = f4
S|m||ar|y f30f3 = fl’ f30f4 = f2
() @) = Tl,@) =T~ 2 =~ =3 =12

f4of2 = f3
S mllal’ly f4of3 = f2, f4of4 = fl
Using these results we have the composition table as given below :
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From the table
(i) All the entries of the composition table are the elements of G .
.. Closure axiom istrue.
(ii) Composition of functionsisin general associative.
(iii) Clearly f; istheidentity element of G and satisfies the identity axiom.
(iv) Fromthetable:
Inverseof f;isf; ; Inverseof f,isf,
Inverseof fisf; ; Inverseof f4isfy
Inverse axiomis satisfied. (G, o) isagroup.
(v) From the table the commutative property is also true.
.. (G, 0) isan abelian group.

9.2.3 Modulo Operation

We shall now define new types of operations called “Addition modulo n”
and “Multiplication modulo n”, where n is a positive integer. To define these
operations we require the notion of “Division Algorithm”.

Leta, b € Zwith b= 0. Then we can divide a by b to get aquotient g and a
non-negative remainder r which is smaller in size than b.

i.e,a=qgb+r,where0<r< |b| Thisiscaled “Division Algorithm”.

For example, if a=17,b=5then17=(3x 5) + 2

Hereq=3andr=2
Addition modulon (+ ) :

Leta, b € Z and n be afixed positive integer. We define addition modulo n
by a+nb=r;0<r <nwherer is the least non-negative remainder when
a+bisdivided by n.

For example, if a=25,b=8andn=7then25+,8=5

(~25+8=33=(4x7)+5)

Multiplication modulon (. )

Asgiven above

a.,b=r; 0<r<n,wherer istheleast non-negative remainder when ab
isdivided by n.

For example, 2.54=3

7.98=2
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Congruence modulon :

Leta, b € Zand n be afixed positive integer.

We say that “aiscongruent to b modulon” < (a- b) isdivisibleby n
Symbolically,

a=b (modn) < (a-b)isdivisible by n.

15 = 3 (mod 4) istrue because 15 — 3 isdivisible by 4.

17 =4 (mod 3) is not true because 17 — 4 isnot divisible by 3.
Congruence classes modulo n :

Let a € Zand n be afixed positive integer.

Coallect all numbers which are congruent to ‘a’ modulo n. This set will be
denoted as [a] and is called the congruence class modulo n or residue class
modulo n.

Thus [a] ={xe Z/x=a(mod n)}
{x e Z/(x-a)isdivisible by n}
={xe Z/(x-a)isamultiple of n}
={xezZl/(x-a)=kn},keZz
={xeZlx=a+kn},keZz
consider the congruence classes modulo 5.
[al ={xe Z/x=a+kn}
[0 ={xeZ/x=5k ke Z} ={..-10,-5,0,5, 10...}
[1] ={xezZ/x=5k+1, keZ} ={..-9,-4,1,6,11, ..}
[2] ={xeZ/x=5k+2,keZ} ={..-8,-3,2,7,12, ..}
[ ={xeZ/x=5k+3, keZ} ={..-7,-2,3,8,13, ..}
[4 ={xezZl/x=5k+4,keZ} ={..-6,-1,4,9,14 ..}
[5] ={xezZ/x=5k+5keZ} ={..-5/0,5,10, ..} =[0]
Similarly [6] =[1] ; [71=[2] ; etc.
Note that, we have only 5 distinct classes whose union gives the entire Z.

Thus the set of congruence classes corresponding to 5 is
{101, [, [2], [3], [4]} and it will be deonoted by Zs.

i.e, Zs={[0], [1], [2], [3], [4]}

If we take the modulo 6, we have Zg = {[0], [1] .... [5]}-

Thus for any positive integer n, we have Z,, = {[0], [1] ... [n— 1]}
Here [n] = [0] and the union of these classes gives Z.
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Operations on congruence classes:
(1) Addition :
Let[a], [b] € Z,
[a] +[b]=[a+Dblifa+b<n
=[r]ifa+b>n
Where r is the least non-negative remainder when a + b isdivided by n.

For example,
INZy9, [8] +10[71=[2]
InZg, [3] +g[5] = [0]
(ii) Multiplication :
bl = {7 i
wherer isthe least non-negative remainder when ab is divided by n
InZs  [2] 5[2] = [4]
[3] 5[4 =2
InZ;, [3] 73] = [2]
InZg, [3] g[3] =[7]
Example 9.25 : Show that (Z,,, +,) forms group.
Solution: Let Z, = {[0], [1], [2], ... [n— 1]} be the set of &l congruence
classesmodulon. and let[I], [m], € Z, O0<l,m,<n
(i) Closureaxiom : By definition
0+l = by M
wherel +m=qg.n+r 0<r<n
In both the cases, [| + m] € Z,,and [r] € Z,
.. Closure axiom istrue.

(ii) Addition modulo n is always associative in the set of congruence classes
modulo n.

(iii) Theidentity element [0] € Z,, and it satisfies the identity axiom.
(iv) Theinverseof [I] € Z,is[n-1]
Clearly [n-1] € Z, and
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(]+n[n=1]=1[0]
(n=1]+,[l] =1[0]
.. Theinverse axiom is also true. Hence (Z,, +,,) isagroup.
Note: (Z,, +,) isafinite abelian group of order n.
Example 9.26 : Show that (Z7 - {[0]}, .7) forms agroup.
Solution: Let G=[[1],[2], ... [6]]
The Cayley’stableis
7 | [ | [2 | 38 | [4 | [5] | [6]
1 3] | [2 | [3] | [4 | [5] | [6]
(21 | [2 | [4 | [6] | [1] | [3] | [9]
(31 | [3 | [6] | [2] | [5] [ [1] | [4]
(4 | [4 | [3 | [5] | [2] | [6] | [3]
(51 | [51 | [3] | [1] | [6] | [4 | [2
(61 | 6] | [5] | [4] | [3] | [2 | [1]

From the table :

(i) adl the elements of the composition table are the elements of G.
.. The closure axiom istrue.

(if) muiltiplication modulo 7 is aways associétive.
(iii) theidentity elementis[1l] € G and satisfies the identity axiom.
(iv) theinverseof [1] is[1] ;[2] is[4] ;[3]is[5];[4] is[2] ; [5]is[3] and
[6] is[6] and it satisfies the inverse axiom.
.. the given set forms a group under multiplication modulo 7.
In general, it can be shown that (Z, - {(0)}, . p) isagroup for any prime p.
But the proof is beyond the scope of this book.

Note : Does the set of all non-zero congruence classes modulo n, a positive
integer, form a group under multiplication modulo n, ?

Example 9.27 : Show that the nth roots of unity form an abelian group of finite
order with usual multiplication.

Solution: We know that 1, o, ©>...... o" ™ 1 are the n'" roots of unity, where

.2 _
w:CISFn.LetG:{l,u),(oz...mn 1}

(i) Closureaxiom: Leto' o™ e G, 0<I,m<(n-1)
Toproveo oM=0' *Me G
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Case(i) I+m<n

If | +m<nthencealy o' *Me G

Case(ii) | + m>n By division agoritham,
[+m=(g.n)+r where0<r<n, gisapositiveinteger.

o FM= i tr =((x)n)q.oar =% =0 eG - 0<r<n
Closure property istrue.

(ii) Associative axiom : Multiplication is always associative in the set of
complex numbers and hencein G

o' (oP.0™ =@ .a)(p+m):(o|+(p+m):co(l+p)+m:(u)|+p) oSk
=(ool.0)p).wm=Vco|,0)m,mpeG
(iii) Identity axiom : Theidentity element 1 € G and it satisfies

lo'=0'l=0 Ve G
(iv) Inverseaxiom :

Foranym' e G, o' eGado . o" 'z o' ze"=1

Thus inverse axiom is true.

- (G, .) isagroup.

(v) Commutative axiom :

0)' .mm=ml+m=wm+|=mm.wl V(nl,o)me G

.. (G, .) isan abelian group. Since G contains n elements, (G, .) isafinite

abelian group of order n.

9.2.4 Order of an element :

Let G be agroup and a € G. The order of ‘a’ is defined as the least
positive integer n such that a" = e, e is the identity element. If no such positive
integer exists, then a is said to be of infinite order. The order of a is denoted by
0(a).

Note: Herea"=a* a* a... *a (ntimes). If * isusua multiplication ‘.’ then
a'isa.a.a..(ntimes)i.e,a".

If * isusual additionthena”isa+a+a+..+a(ntimes)i.e, na. Thusa"
is not “a to the power n”, it isa symbol to denotea * a* a ... * a (n times).
Clearly " € G, if a € G . (By the repeated application of closure axiom).
Theorem :

For any group G, the identity element is the only element of order 1.
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Proof : If a (# €) isanother element of order 1 then by the definition of order of
an element, we have (a)1 =e= a=-ewhichisacontradiction. .. eisthe only
element of order 1.
Example 9.28 : Find the order of each element of the group (G, .)
whereG={1,-1,i, —i}.
Solution: In the given group, the identity elementis1. .. 0(1) = 1.
0(=1) =2 [ we haveto multiply — 1 two times (minimum) toget 1 i.e,,
CDED=1]]
0(i) =4[ we haveto multiply i four timesto get 1, i.e, (i) (i) (i) (i) = 1]
O(—=1) =4[ we haveto multiply — i four timesto get 1].
Example 9.29 : Find the order of each element in the group G = {1, o, 0)2},
consisting of cube roots of unity with usual multiplication.
Solution: We know that the identity element is1. .. 0(1) = 1.
O(w) = 3. Since ®.0.0=0°=1
0(0?) = 3since (02 (09 (@) =w’=1
Example 9.30 : Find the order of each element of the group (Z,, +4)
Solution:  Z, = {[0], [1],[2], [3]} is an abelian group under the addition
modulo 4. The identity element is[0] and note that [4] = [8] =[12] =[0]
oo =1
0([1]) = 4 [ wehaveto add [1] four timesto get [4] or [0]]
0([2]) = 2[".- wehaveto add [2] two timesto get [4] or [0]]
0([3]) = 4 - wehaveto add [3] four timesto get [12] or [Q]
9.2.5 Properties of Groups:
Theorem :
The identity element of agroup is unique.
Proof : Let G beagroup. If possible let e; and e, be identity elementsin G.

Treating e, as an identity element we havee; * e, =&, .. (1)
Treating e, as an identity element, we have e; * e, = e .. (2
From (1) and (2), &= &,
.. ldentity element of agroup is unique.

Theorem :
Theinverse of each element of agroup is unique.

Proof :

LetGbeagroupandleta e G.
If possible, let a; and a, be two inverses of a.

188



Treating a; asaninverseof ‘a’ wehavea* a; =a;* a=e.
Treating a, asaninverseof ‘a’, wehavea* a,=a,*a = e
Now y=a ey r@ray)=(yra)*a=-er*a=a
= Inverse of an element is unique.
Theorem : (Cancellation laws)
Let G beagroup. Thenfor dl a, b, c € G,
(i) a*b=a* c= b=c(Left Cancellation Law)
(i) b*a=c* a= b=c(Right Cancellation Law)

Proof : (i) a*b=a*c = a’l*(a*b):a’l*(a*c)
= (a’l*a)*b:(a’l*a)*c
= e*b=e*c
= b=c

(i) b*a=c*a = (b*a*a‘=(c*a)*ar
= b*(a* a_1)=c*(a* a_l)
= b*e=c*e
= b=c

-1
Theorem : Inagroup G, (a’l) =aforeveryae G.
Proof :

-1
We know that a* € G and hence (a’l) € G. Clearly a* al=alra=e
-1 -1
al*@lh =@l *al=e
-1
— a*al= (a’l) * gt
-1
= a=(a? (by Right Cancellation Law)
Theorem : (Reversal law)
LetGbeagroupa, b e G. Then(a* b)~ loptlxgt
Proof : It isenough to prove bt* alistheinverse of (a* b)
- Toprove (i) (@a*b)* b t*ab=e
(i) 0l*ah)*(@a*b)y=e
() (@*b*@bml*al)y=a*®*bhH*at
=a*(e)* atl

—a*ral=e
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©)

4

©®)

(6)

()

©)

©)
(10)

11)

(12)

i) Gl*ab*@*b=bi*@i*a*b
=bt*(e*b
=bt*b=e
- b1* alistheinverseofa* b e, (a* b)‘lz bixat
EXERCISE 9.4
Let S be a non-empty set and o be a binary operation on S defined by
X0y =X; X, Yy € S Determine whether o is commutative and associative.
Show that the set N of natural members is a semi-group under the
operation X * y=max {X, y}. Isit amonoid?
Show that the set of al positive even integers forms a semi-group under
the usual addition and multiplication. Is it a monoid under each of the
above operations?

10 01
Prove that the matrices (O J , (1 0) form a group under matrix
multiplication.
Show that the set G of all positive rationals forms a group under the

composition * defined by a* b :a—??for dla,beG.

swnal(s .0 5} (5 60 M o)

where »° =1, » = 1 form agroup with respect to matrix multiplication.
Show that the set M of complex numbers z with the condition | z | = 1
forms a group with respect to the operation of multiplication of complex
numbers.

Show that the set G of al rational numbers except — 1 forms an abelian
group with respect to the operation * givenbya* b=a+ b+ abfor al a,
beG.

Show that the set {[1], [3], [4], [5], [9]} forms an abelian group under
multiplication modulo 11.

Find the order of each element in the group (25 —{[0]}, .5)

ao
Show that the set of al matrices of the form (o o) ,ae R-{0} forms

an abelian group under matrix multiplication.

Show that the set G = {2" / n e Z} is an abelian group under
multiplication.
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10. PROBABILITY DISTRIBUTIONS

10.1 Introduction :

In XI Standard we dealt with random experiments which can be described
by finite sample space. We studied the assignment and computation of
probabilities of events. In the Sciences one often deals with variables as a
‘quantity that may assume any one of a set of values'. In Statistics we deal with
random variables - variables whose observed value is determined by chance.
10.2. Random Variable:

The outcomes of an experiment are represented by a random variable if
these outcomes are numerical or if real numbers can be assigned to them.

For example, in a die rolling experiment, the corresponding random
variable is represented by the set of outcomes {1, 2, 3, 4, 5, 6} ; while in the
coin tossing experiment the outcomes head (H) or tail (T) can be represented as
a random variable by assuming O to T and 1 to H. In this sense a random
variableisareal valued function that maps the sample space into the real line.

Let us consider the tossing of two fair coins at a time. The possible results
are {HH, TH, HT, TT}. Let us consider the variable X which is “the number of
heads obtained” while tossing two fair coins. We could assign the value X =0
to the outcome of getting no heads, X = 1 to the outcome of getting only 1
head and X = 2 to the out come of getting 2 heads.

Therefore X (TT) =0, X(TH) =1, X (HT) =1 and X (HH) = 2.
Therefore X takes the values 0,1,2. Thus we can assign a real number X(s) to
every element s of the sample space S
Definition : If Sis a sample space with a probability measure and X is a red
valued function defined over the elements of S, then X is caled a random
variable.

A random variableis aso called a chance variable or a stochastic variable.
Types of Random variables:

(1) Discrete Random variable (2) Continuous Random variable
10.2.1 Discrete Random Variable:

Definition : Discrete Random Variable

If arandom variable takes only afinite or a countable number of values, it
iscalled adiscrete random variable.

Note : Biased coins may have both sides marked as tails or both sides marked as
heads or may fall on one side only for every toss, whereas a fair or unbiased coin
means, it has equal chances of falling on heads and tails. Similarly biased dice may

have repeated numbers on several sides ; some numbers may be missing. For afair die
the probability of getting any number from one to six will be 1/6.
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Example:

1. The number of heads obtained when two coins are tossed is a discrete
random variable as X assumes the values 0, 1 or 2 which form a
countable set.

2. Number of Aceswhen ten cards are drawn from awell shuffled pack of
52 cards.

The random variable X assumes 0, 1, 2, 3 or 4 which is again a countable set.
i.e, X (Noaces)=0, X (oneace) =1, X (two aces) =2,
X (three aces) = 3, X (four aces) =4
Probability Mass Function :

The Mathematical definition of discrete probability function p(x) is a
function that satisfies the following properties :

(1) The probability that X can take a specific value x is p(X)
ie, PX=x) =p(X) =p,.

(2) p(x) isnon— negative for all real x.
(8) The sum of p(x) over al possible values of X is one. That is
>'p; =1 wherej represents all possible values that X can have and p;
is the probability at X = X;
If aj, ay, . .. ayp a by, by, .. by, bbethevaues of the discrete random
variable X in ascending order then
(i) PX>a) =1-P(X<a)
(i) PX<a) = 1-P(X>a)
(iii) P@<X<b) = P(X =a) +P(X=by) +P(X=Dhy) +...
...+ P(X=b) + P(X=h).
Distribution function : (Cumulative Distribution function)
The distribution function of a random variable X is defined as
FX) = PX<x)= > p(x): (-0 < X < o).
Xi <X
Properities of Distribution function :
1) F(x) isanon-decreasing function of x
2) 0<F(X) £1 —o<x<w

192



Lt

3) F(-x) = X5 — o

Fx) =0

4 F) =y ., F®=1

5) P(X=x,) =F(Xy) - F(X,_1)
[llustration :

Find the probability mass function and cumulative distribution function for
getting number of heads when three coins are tossed once.
Solution : Let X be the random variable “getting number of Heads’. Sample
space when three coins are tossed is

S — [ HHH |HHT [HTH | THH | HTT | THT | TTH | TTT
d N N N N N N N N
R 3 2 2 211 ]1] 110
No.of Heads)

Since X is the random variable getting the number of heads, X takes the
vaues0,1,2 and3. (X: S— R).

P(X=0) =

P (getting no head)

P (getting one head) PX=1) =

P (gettingtwo heads) = P(X=2) =

@l lw Wlw ™l

P (getting threeheads) = P (X=3) =

.. probability mass function is given by P()
U8 if x=0 1
POY=3pit X2 OR
U8if x=3
X 0 1 2 3
PX=x) | 1/8 | 3/8 | 3/8 | 1/8 Vg | | l

To find cumulative distribution function.

Wehave F(x) = ZX: P(X= x)

Xj=—©
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When X =0, F(0) = P(X = 0) ::—é

When X =1, F(1)

1
> P(X=x)

i=—o0

1l
1l
NI

[ee][F=N

P(X =0) +P(X=l)=% + % =

When X =2, F(2)

I
™M
3
X
!
x

I
o
~—~~
X
I
o
N
+
T
~—_
X
1
=
+
3
X
I
N
N

21 3 3 _7
“g8*8*t 8 "%

3
3 P(X= x)

i=-w

P(X=0) +P(X=1)+P(X=2) + P(X=3)

When X =3, F(3)

1 3 3 1
= g + g + g + § =1
Cumulative distribution function is F(x)
A
0if —o<x<0 1:'
Ugif 0<x <1
F(x) = 1/2 if1<x<2 7/8¢ S
7/8if 2<x <3
1 if 3<x<w 1/2¢ ——
/89—
—— 00— >
! Figz.10.2'3
Example 10.1 :

Find the probability mass function, and the cumulative distribution
function for getting ‘3's when two dice are thrown.

Solution :

Two dice are thrown. Let X be the random variable of getting number of
‘3's. Therefore X can take the values 0, 1, 2.
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o 25 Sample Space

Pho'3) =PX=0%36 1T (1,3? Sl(01,4) (15) | (16)
Plone’3) = Px=1)=33 | @1 @2 | 23 |24 ] (@25 |29
(31) | (32) (34) | 35) | (36)
41| @2 43 | @49 @546
1| G2 53 |6G4]| G556
61|62 ] 63 |®64] 65 ] (66
probability mass function is given by

X 0 1 2

P(X=x) | 25/36 | 10/36 | 1/36
Cumulative distribution function :

P(two '3's) = P(X=2) :3_16

We have F(x) = ZX: P(X= x)

Xj =— o0
F(0) = P(X :o):%
F(1) = PX=0)+P(X=1) =52 + 30 = 32
F(2) = P(X =0) + P(X=1) + P(X :2):%+é_8+3_%:%:1
X 0 1 2

F(x) | 25/36 | 35/36 | 1

Example 10.2 A random variable X has the following probability mass function

X o[ 1234576
PX=x) | k | 3k | 5k | 7k | 9 | 11k | 13k
(1) Findk.

(2) Evaluate P(X<4), P(X=5) and P(3< X< 6)
(3) What isthe smallest value of x for which P (X < x) >% .

Solution :
6
(1) Since P(X =x) isaprobability massfunction > P(X=x)=1
x=0
ie,P(X=0) + P(X=1) +P(X = 2) +P(X = 3) +P(X = 4) +P(X=5)+P(X =6) = 1.

=k+3k +5k +7k +9k +11k +13k =1 = 49k =1 = k:4—19
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2 P(X<4) =P(X=0) + P(X =1) + P(X = 2) +P(X=3)
1 3 5 7 16
=29 *29*29%39 7 X9
1 .13 _24
49129 49
P(3<X<6) = P(X=4) +P(X =5) +P(x:6):4—99+%+3'1—g:%’

P(X>5) = P(X=5) + P(X=6) =

(3) The minimum value of x may be determined by trial and error method.

P(X<0) =25 < 3 ; PX<1)=75<3
P(X<2) =35 < 3 ; P(X<3)=20<3
Pix<a) =22 > 2

.. The smallest value of x for which P(X < x) >%is4.

Example 10.3 :An urn contains 4 white and 3 red balls. Find the probability
distribution of number of red ballsin three draws one by one from the urn.
(i) with replacement (ii) without replacement
Solution : (i) with replacement
Let X be the random variable of drawing number of red ballsin three draws.
. X cantakethevalues 0,1,2,3.
P(Red ball) :% = P(R)
P(Not Red ball) = % = P(w)

Therefore P(X = 0) = P(www) =5 x 5 x 5 = o

P(X=1) = P(rRww) + P(WRrw) + P(WWR)

(3 4 4 (4 3 4 (4 4 3
‘(7*7*7)*(7*7*7)*(7*7*7)
_ 48 _ 144
=3 x313 = 343

P(X=2) = P(RRW) + P(RWR) + P(WRR)

(3.3 4 (3 4 3 (4 33
‘(7*7*7)*(7*7*7)*(7*7*7)
3 3 4 36 108

=3X7X7X7=3X3T3=%
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P(X=3) = P(rRRR) = %x%x% =

27

343
The required probability distribution is
X 0 1 2 3
P(X=x) | 64/343 | 144/343 | 108/343 | 27/343

Clearly al pysare>0 and 2p; = 1.

2) Without replacement : It isalso treated a simultaneous case.

Method 1: Method 2:
Using combination Using Conditional Probability
(i) P(no red ball) 0 P(www) ;71 y % y %
403><3CO
PX=0) = —7— _4
Cs =35
_4x1 4
=3 T35
(i) P(1 red ball) (i) P(RwW) + P(WRw) + P(WwR)
4c, % 3¢ _(5 4 3) (‘_1 3 §)
P(X=1) = —5— =\7*6*5 "\7*6*5
@ (é 3 §)
_6x3 _ 18 T\7%6%5
- 3» B _ 5,30 _36_18
=2 X210770735
(iii) P(2 red ball) (iii) P(RRW) + P(RWR) + P(WRR)
4c, x 3¢ _(5 2 ﬂ) (5 4 Z)
P(X=2) = —5— “\7%6%5) "\7%6*5
(é 3 Z)
_4x3 12 "\776*5
-3 T3 24 12
=3x210 T35
(iv)P(3 red ball) V) PR =§ y % y %
4CO><3C3
PX=3)=—=— _1
Cs =35
_1x1 1
=3 T35
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X 0 1 2 3
4 18 12 1
P(X=x) 35 35 35 35

Clearly all pysare>0and >p; =1

10.2.2 Continuous Random Variable:

Definition : A Random Variable X is said to be continuous if it can take all
possible values between certain given limits. i.e., X is said to be continuous if
its values cannot be put in 1 — 1 correspondence with N, the set of Natural
numbers.

Examples for Continuous Random Variable

Thelifelength in hours of a certain light bulb.

Let X denote the ph value of a chemical compound which is randomly
selected. Then X is a continuous random variable because any ph value,
between 0 and 14 is possible.

If in the study of ecology of a lake, we make depth measurements at
randomly chosen locations then X = the depth at such location is a
continuous random variable. The limit will be between the maximum
and minimum depth in the region sampled.

Probability Density Function (p.d.f.):

The mathematical definition of a continuous probability function f(x) isa
function that satisfies the following properties.

(i) The probability that X is between two points a andbis

b
Pla<x<h)= [f(x) dx

a

(ii) Itisnon-negative for al real X.

o0
(iii) Theintegral of the probability functionisli.e., ff(x) dx =1

— o0

Continuous probability functions are referred to as p.d.f.

Since continuous probability function are defined for uncountable number of
points over an interval, the probability at a single point is aways zero.

a

ie,P(X=a)= [f(x)dx =0.

a
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The probabilities are measured over intervals and not at single points. That
is, the area under the curve between two distinct points defines the probability
for that interval.

s Pl@asx<b)=P@a<X<b)=P@<x<b)=Pla<x<h)

Discrete Probability function are referred to as probability mass function and
continuous probability function are referred to as probability density function.
The term probability function covers both discrete and continuous distribution.
Cumulative Distribution Function :

If X isacontinuous random variable, the function given by

X
F(X) = P(X<x) = f f(t)dt for — o < x < o where f(t) is the value of the

— 00
probability density function of X at t is called the distribution function or
cumulative distribution of X.
Properties of Distribution function :
(i) F(x) isanon-decreasing function of x
(i) OSF(X)<1, —oo <X<oo0.

X — o0
(iii) F(—oo)=x_)|t_oo Jiax = [fdx =0

— 00 — 0

It

X [o'e]
(iv) F(e) = Jidx = ffx)dx =1

X —> 0
(v) Foranyreal constant a andbanda< b, P(a<x<b)=F(b)-Fa)
Vi) 9= o F(x)

i.e, F'(x) =f(x)

Example 10.4 : A continuous random variable X follows the probability law,
_ kx(l—x)lo, O0<x<1

fx = { 0 elsewhere

Find k

o0
Solution:  Sincef(x) isap.d.f ff(x) dx =1

—0o0
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1 By properties of definite
ie, J1-%Pdx =1 integral

0 a a
1 f(x) dx= f(a—x)dx
ie., fk(l—x) [1-(1-x%]Yx=1 { {

0

; 1 10

ie., kf(l—x)x dx=1
0

1

11 1271 1
} =1 k[ﬁ—Elez k=132

e, k}(xlo—xll)dx: 1= kh—l -5
0
Example 10.5 : A continuous random variable X has p.d.f. f(x) = 3%,
0<x<1, Find aand b such that.
(i) P(X<a) =P(X>a) and (ii) P(X >b) =0.05
Solution :
(i) Sincethetotal probability is1, [Giventhat P(X<a) =P (X> g]
PX<a)+P(X>a) =1
i,e, PX<a)+P(X<a) =1

0

= P(X<a) =%

a 1 ¥ 1
= i =5 = [3d=3
0 0

sl ! 1 1l
. oX _ 4 3_41. _ (433
|.e., [ 3 } - 2 = a = 2 |e, a= (2)

0
(i) P(X>b) =0.05

1 1
o ffgdx =005 - [3Edx =005
b b
371
[3%} =005 = 1- b3=005
b
95 10\
3 _ _ _ 99 _ (4933
b%=1-005 = 0.95= 155 = b-(zo)
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Example 10.6 : If the probability density function of a random variableis given

k(1- O0<x<1
by fx) = { (o ) elsevi/(here
find (i) k (i) the distribution function of the random variable.

o0
Solution: (i) Sincef(x) isap.d.f. ff(x) dx =1

— o0

1 1
fii-®dx =1 = k[x—%} =1 = k[l—%] =1
0 0

w

= (%)k=1 or k= %
X
(ii) Thedistribution function F(x) = ff(t) dt
(& Whenxe (-x,0]
F(x) = }f(t) di=0
(b) Whenxe (0, 1)
F(x) = }(‘f(t) dt
0
_ ff(t)dt+ff(t)dt—0+f2(1—t2)dt 3( X;)
—® 0 0

(c) When x € [1, »)

X 0 1 X 13 2
F(x) = ff(t)dt= ff(t)dt+ff(t)dt+ff(t)dt=0+f§(l—t)dt+0

— — o O l O

3 t3l 0 —0<X<0
- E[tﬁ} =1 ~F= 3/2(x x33) 0<x<1
0 1<X<ow
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Example 10.7 : If F(X) = % (% +tan ! x) — o < x < o is a distribution
function of a continuous variable X, find P(0< x<1)
I _1(zn -1
Solution: F(x) = n (2 +tan x)
P(0< x<1)= F(1) - F(0)
I T R N | )
= 2 (3 rate) 2[5 vt

_l[hz} 1(£+0)_1[E+£ EJ_l
xl274] R\2*Y= T2 472]7%

B 1<x<é . . _
Example 10.8: If f(x) =1 X is a probability density function of
0, elsewhere
a continuous random variable X, find p(x > €)
o0
Solution: Sincef(x) isap.df. [f(x) dx =1
—

e3

A 3
f;dx =1 = A[Iogx]e1 =1
1

= Alloge®—log1] =1 = A3] =1 = A=13

L 1<x< e3
Therefore f(x)= 4 3x’

0 elsewhere
e 3
P(x>¢€) :% f)—l(dx % [Iogx](ie

e

[3-1] =

Wl
wWIN

= % [log e - loge =
Example 10.9 : For the probability density function
~2X
f(x)z{ ge » X >0 find F(2)

,X<0
2
Solution : F(2) = P(X<2)= [f(x) dx
— 00
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2 _ox 2 4
=f2e‘2x dx=2.[e—2} =—[e‘4—1]:1—e‘4=e ;1
0 B 0 e

Example 10.10 : The total life time (in year) of 5 year old dog of a certain
breed is a Random Variable whose distribution function is given by

0 ,forx<b
F(X) = 1—%,for x>5 Find the probability that such a five year old dog

will live (i) beyond 10 years (ii) less than 8 years (iii) anywhere between
12to 15 years.
Solution : (i) P(dog living beyond 10 years)

P(X>10) = 1- P(X < 10)

25
=1-|1-— | when x=10
2-3)

25 3 1
= 1—(1—m) =1l-2=1%
(ii) P(dog living lessthan 8 years)
P(X<8) = F(8) [since P(X < 8) = P(X < 8) for acontinuous distribution]
-(1-B)-(1-B) -
{7 g2) "\~ 64) "64
(iii) P(dog living any where between 12 and 15 years) = P(12 < x < 15)
_ (1.2 20 _ 1
= F(15) - F(12) _(1—152j —(1—122j =16
EXERCISE 10.1

(1) Find the probability distribution of the number of sixesin throwing three
dice once.

(2) Two cards are drawn successively without replacement from a well
shuffled pack of 52 cards. Find the probability distribution of the number
of queens.

(3) Two bad oranges are accidentally mixed with ten good ones. Three
oranges are drawn at random without replacement from this lot. Obtain
the probability distribution for the number of bad oranges.

(4) A discrete random variable X has the following probability distributions.

X 0] 1] 2 3 4 5 6 7 8

PX)| a|3a|5a|7a|9a| 11a | 13a | 15a | 17a

(i) Find the value of a (ii) Find P(x<3) (iii) Find P(3<x<7)
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(5) Verify that the following are probability density functions.

2X

o 0<x<3 1 1
9 (b) f(X):;

0 esewhere 1+

@ f(x)= {

X2) ,—00 < X< o0
- cx(l—x)3» 0<x<1
(6) For the p.d.f f(X) { 0 dlsewhere
find (i) the constant ¢ (i) P (x<%)

(7) The probability density function of arandom variable x is

o
a-1 —BX
f(x)={kx e % 0, B>0 Find (i) k (ii) P(X> 10)
0 , elsewhere
0 x<0
2
(8) For the distribution function given by F(x) = >1< 0SX§11
X >

find the density function. Also evaluate
(i) P(05<X<0.75) (i) P(X<0.5) (iii) P(X > 0.75)
(9) A continuous random variable x has the p.d.f defined by

ce® 0<x<w

f(x) = {O elsawhere - Findthevalueof cif a>0.

(20) A random variable X has a probability density function

; _{k,0<X<2n
09 = 0 elsawhere

Find (i) k (ii)P(O<X<g) (iii)P(g< x<3—2“)
10.3 Mathematical Expectation :

Expectation of a discreterandom variable:

Definition : If X denotes a discrete random variable which can assume the
values Xp, Xg, . ... .. X, With respective probabilities pq, py, . . . P, then the

mathematical expectation of X, denoted by E(X) is defined by

n n
EX)=p1 X + ppXot..... + Py = P X Where Y pi=1
i=1 i=1

204



Thus E(X) is the weighted arithmetic mean of the values x; with the
weightsp(x) .. X =E(X)

Hence the mathematical Expectation E(X) of arandom variable is ssmply
the arithmetic mean.

Result : If ¢(X) isafunction of the random variable X,
then E[p (X)] =2 P(X=X) ¢ (x).

Properties:
Result (2) : E(c) = ¢ wherecisaconstant
Proof : EXX) =2 p; %
LEC=2Xpc=crp=ca2p =1
. E(c)=c
Result (2) : E(cX) = cE(X)
Proof : E(CX) = X (ex)p; = (€X)) P+ (X)) P2 +. .. (CXo) Py
=c(PyXy + PoXo +o. . PpXy)
= cE(X)
Result (3) : E(@X +b) =aE(X) +h.
Proof : E(@X +b) = 2 (ax+b) p
= (@xq+ b) py+ (@xp + b)pp + (2%, + b) py
=a(pyrXqg + P ... PpXp) + DI P

= aE(X) +b. Smilarly E(aX - b) =aE(X)- b
Moments : Expected values of a function of a random variable X is used for
calculating the moments. We will discuss about two types of moments.
(i) Moments about the origin
(it) Moments about the mean which are called central moments.
Moments about the origin :
If X isadiscrete random variable for each positive integer r (r =1, ...) the

I'th moment

[/ =EX) = Tpix]
First moment : H' = E(X) =2 p X
Thisis called the mean of the random variable X.
Second moment : p,’' = EX?) =% Pi Xi2
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Moments about the Mean : (Central Moments)

For each positive integer n, (n =1, 2, ...) the n™ central moment of the
discrete random variable X is

b= EX= X )" =34 -X)"p

First moment about the Mean u; = EX— X )1 = (x5 —x)1p,

1= ZXP-XZp=XXp—-X(1) as Xp=1
= EX)-E(X)=0
The algebraic sum of the deviations about the arithmetic mean is always
zero

2" moment about the Mean 1, = E(X — X )2

Z EOR+ X 2X X) = E(X)) + X2 X E(X) (~ X isaconstant)
= E(X%) + [E(X)]? - 2E(X) E(X)
np = EQA) —[E? =y - ()P

Second moment about the Mean is called the variance of the random
variable X

pp = Var (X) = E(X— X )* = E(X) - [E(X))?

Result (4) : Var (X £c¢) = Var Xwhere cisaconstant.
Proof : wkt Var (X) = E(X- X )?
Var (X+¢) = E[(X+¢) —E (X+0)]?
= E[X+c —E(X) - ?
= E[X-X]* = VaX
Similarly Var (X-c¢) = Var (X)
.. Variance is independent of change of origin.
Result (5) : Var (aX) = a Var (X)
Proof Var (aX) = E[aX - E@X)]? = E[aX — aE(X)]?
= Ela{X - E(X)}]?
= 2 E[X —E(X)]? = a’Var X
Change of scale affects the variance
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Result (6) : Var (c) = 0 where cisaconstant.
Proof : Var (c) = E[c— E(c)]°=E[c- ] = E(0)=0
Example 10.11 : Two unbiased dice are thrown together at random. Find the
expected value of the total number of points shown up.
Solution : Let X be the random variable which represents the sum of the
numbers shown in the two dice. If both show one then the sum total is 2. If both
show six then the sumis 12.
The random variable X can take values from 2 to 12.
(Y]
1221
1,3 (2,2 (3, 1)
1,49 2,3 3241
1,524 3B34251)
(1,6) (2,5 (3,4 (4,3) (5,2 (6,1)
(2,6) (3,5 (4,4 (5,3) (6,2
(3,6) (4,5) (5,9 (6,3
(4,6) (5,5) (6,4

(5, 6) (6,5)
(6,6)
.. The probability distribution is given by.
X |2|3|4|5|6|7)|8]|9]|10]|11]12
=0 | |2 |2 (A58 [5lAalal2]l
36 |36 |36 |36 |36 |36 |36 |36 |36 |36 |36

EX) =2 p X=X P

1 2 3 1 252
:(ZX%) +(3><%)+(4><3—6) + ...t (12><3—6) 2527

Example 10.12 : The probability of success of an event is p and that of failure
isq. Find the expected number of trialsto get afirst success.
Solution: Let X be the random variable denoting ‘ Number of trials to get afirst
success . The success can occur in the 1% trial. .. The probability of successin
the 1% trial is p. The success in the 2™ trial means failure in the 1% trial.
.. Probability is gp.

Successin the 3 trial means failure in the first two trials. .. Probability of
success in the 3 trial is qu. As it goes on, the success may occur in the nth

trial which mean thefirst (n—1) trialsare failures. .. probability = q”‘lp.
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*. The probability distribution is as follows

X 1] 2] 3 .1 n.
P | p |ap | % | - | " Fp...
S EX) =2p %

=1.p+20p +39% +... +ng" 1p..
=p[l+2q+3g°+.. +ng"+ ]

_ 2_2=2 -1
SPl-dT =R = G =y

Example 10.13 : An urn contains 4 white and 3 Red balls. Find the probability
distribution of the number of red bals in three draws when a ball is drawn at
random with replacement. Also find its mean and variance.

Solution : The required probability distribution is [Refer Example 10.3]

X 0 1 2 3
_ .| B4 [ 144 108 | 27
PX=%) 1323 | 343 | 343 | 343
Mean E(X) = X p; X

64 144 108 27 9
=o(35)+1 (323 +2(313) +2(35)=3

Variance = E(X9) - [E(X)]?

E(P) = X py %
_ (84, 2144 2(@) 2(2)_£
‘0(343)’“1(343)*2 343) 37343 )= 29
vaimoos UL _ (9 - 2
anance= ;g9 - \7) ~ 29

Example 10.14 : A gameis played with asingle fair die, A player wins Rs. 20 if
a2turnsup, Rs. 40 if a4 turns up, loses Rs. 30 if a 6 turns up. While he neither
wins nor loses if any other face turns up. Find the expected sum of money he
can win.

Solution : Let X be the random variable denoting the amount he can win. The
possible values of X are 20,40, — 30 and O.

P[X =20] = P(getting 2) =

P[X =40] = P(getting 4) =

Dl ol ol

P[X =—-30] = P(getting 6) =
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The remaining probability is%

X 20 | 40 | 30 | 0
PX | 16 | U6 | U6 | 12
Mean E (X) = 2 p; %

200 () o0 2] +of2)=s

Expected sum of money hecanwin = Rs. 5
Expectation of a continuous Random Variable:
Definition : Let X be a continuous random variable with probability density
function f(x). Then the mathematical expectation of X is defined as

E(X) = [ xf(x) dx

Note: If ¢ is function such that ¢(X) isarandom variable and E [¢ (X)] exists
then

Ele (] = fo (x) f(x) dx

—00

o0
EX®) = [ x2f(x) dx
—00
Variance of X = E(X?) - [E(X)]?
Results: (1) E(c) = cwherecisaconstant

E(© = Jef®dx =c [fdx=c as [f(X)dx =1

(2) E@Xtb)=aEX) tb

E(@Xtb) = f(axtb)f( dx = faxf(x)dx + [bf(x)dx

—00 —00 0

=a [xfxdx + b [fx) dx =aEX)+b

—00 —00
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Example 10.15 : In a continuous distribution the p.d.f of Xis

3
_Iax(2-x 0O<x<2
f(x)—{4 > otherwise

Find the mean and the variance of the distribution.
2

Solution : EX) = fxf(x) dx = fx.%x(Z—x) dx

0
Mean =
w 2
EOA) = () dx = f X3 X(2 - X) dx
o A

6
5 -5
Example 10.16 : Find the mean and variance of the distribution
—3X
) :{3e ,0<X<o0
0 ,elsewhere

Variance = E(X?) — [E(X)]° =

Solution :
0 0 |ﬂ
E(X) = [ xf(x) dx fX”e*“XdX=an+1
0 o |i When n is a positive
= fx(3e’3x) dx=3 fxe’3x dx :3.—2:% integer
0 0 3
o0 o0 |£
EC® = [ 3™ dx =3 ¥ e dx =3.?=§
0 0
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D

)

©)

(4)

©)

(6)

()

2
Var(X) = E[X] - E[X]zzé— @ :é

1 . 1
~Mean =73 ; Varlance=§

w

EXERCISE 10.2
A dieistossed twice. A success is getting an odd number on atoss. Find

the mean and the variance of the probability distribution of the number of
SUCCESSES.

Find the expected value of the number on a die when thrown.

In an entrance examination a student has to answer al the 120 questions.
Each question has four options and only one option is correct. A student
gets 1 mark for a correct answer and loses half mark for awrong answer.
What is the expectation of the mark scored by a student if he chooses the
answer to each question at random?

Two cards are drawn with replacement from a well shuffled deck of 52
cards. Find the mean and variance for the number of aces.

In a gambling game a man wins Rs.10 if he gets all heads or all tails and
loses Rs.5 if he gets 1 or 2 heads when 3 coins are tossed once. Find his
expectation of gain.

The probability distribution of arandom variable X is given below :

X 0 1 2 3
PX=x) | 01 | 03 05 0.1

If Y = X2+ 2X find the mean and variance of Y.

Find the Mean and Variance for the following probability density
functions

3 —12<x<12 ae X if x>0
() fg=924 ~ =777 (i) f(x) = if x>

0 ,otherwise 0 ,otherwise

o Ixe X Lif x>0
(i) 104 _{0 ,otherwise
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10.4 Theoretical Distributions:

The values of random variables may be distributed according to some
definite probability law which can be expressed mathematically and the
corresponding probability distribution is called theoretical distribution.
Theoretical distributions are based on expectations on the basis of previous
experience.

In this section we shall study (1) Binomial distribution (2) Poisson
distribution (3) Normal distribution which figure most prominently in
statistical theory and in application. The first two distributions are discrete
probability distributions and the third is a continuous probability distribution.

Discrete Distributions:
Binomial Distribution :
This was discovered by a Swiss Mathematician James Bernoulli (1654—1705)

Bernoulli’s Trials:

Consider a random experiment that has only two possible outcomes. For
example when a coin is tossed we can take the falling of head as success and
falling of tail as failure. Assume that these outcomes have probabilities
p and q respectively such that p + g =1. If the experiment is repeated ‘n’ times
independently with two possible outcomes they are called Bernoulli’s trials. A
Binomial distribution can be used under the following condition.

(i) any tria, result in asuccess or afailure

(ii) There are afinite number of trials which are independent.

(iii) The probability of successisthe samein each trial.
Probability function of Binomial Distribution :

Let n be a given positive integer and p be a given real number such that
0<p<1l Also let =1 - p. Consider the finite probability distribution
described by the following table.

X 0 1 2 n

PCO) | o | nepd™™t | neppid™t | p"

The table shown above is called the Binomial distribution. The 2™ row of
the table are the successive termsin the binomial expansion of (q + p)".

Binomial probability function B(n,p,X) gives the probability of exactly
x successes in ‘'n’ Bernoullian trials, p being the probability of successin atrial.
The constants n and p are called the parameters of the distribution.
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Definition of Binomial Distribution :

A random variable X is said to follow Binomia distribution if its
probability mass function is given by

n X N—X

P(X = %) = p(¥) ={OCX'° q

,Xx=0,1,...n
otherwise
Constants of Binomial Distribution :
Mean = np
Variance = npq
Standard deviation = +/variance =+/npq

X ~ B(n, p) denotes that the random variable X follows Binomia distribution
with parameters n and p.

Note: In aBinomial distribution mean isalways greater than the variance.
Example 10.17 : Let X be a binomialy distributed variable with mean 2 and

standard deviation % Find the corresponding probability function.

Solution : np=2 ;/npq :\%
npg = 4/3
_hpq _a43 _ 4 _2
q_np -2 7 673
2 1
p:l_ = 1_§:§

np=2 .. n@):z = n=6
.. The probability function for the distribution is

1\ X /2\6-x
P[X=x]=6cx(§) @ ,x=0,1,2, ...6

Example 10.18 : A pair of dice is thrown 10 times. If getting a doublet is
considered a success find the probability of (i) 4 success (ii) No success.
Solution : n =10 . A doublet can be obtained when a pair of dice thrown is
{(1,1), (22) (33),(449), (55) (6,6)} ie, 6ways.

Probability of successis getting a doublet

6 1
"p:3—6:6;q:1_p:1_

[
olo
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Let X be the number of success.

Wehave PIX =x] =nc, p* q"*
4 6
(8) P(4 successes) =P[X =4] = 10c, (%) (a

_210x5° 35 @6
~ T 60 T216 6
(b) P (no success) = P(X=0)

- 0c, (§) 7=

Example 10.19 : In a Binomial distribution if n = 5and P(X = 3) = 2P(X = 2)
findp

Solution :  P(X=x) =nc, p* d"

P(X=3) = 5c,p’q” and P(X= 2) = 5¢, P’

. 3.2 _ 2.3
. 5¢, P _2(502pq)
L p=2q )
p=2(1-p =3p=2;p=3
Example 10.20 : If the sum of mean and variance of a Binomial Distribution is
4.8 for 5 trials find the distribution.
Solution : np +npg =48 = np(l+q)=4.8
5p[1+(1-p) =48
p°-2p+096=0 = p=12,08
. p=08; g=0.2 [-pcannot begreater than 1]
<. The Binomidl distribution is P[X =] = 5¢_ (0.8 (0.2>X x=0t05
Example 10.21 : The difference between the mean and the variance of a
Binomial distribution is 1 and the difference between their squaresis 11.Find n.
Solution : Let the mean be (m + 1) and the variance be m from the given
data.[ Since mean > variance in abinomial distribution]
(Mm+1)%-n? =11= m=5
~mean=m+1=6

= np =6; npg=5 .. q=g, p=% = n= 36.
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EXERCISE 10.3

(1) The mean of abinomial distribution is 6 and its standard deviation is 3. Is
this statement true or false? Comment.

(2) A dieisthrown 120 times and getting 1 or 5 is considered a success. Find
the mean and variance of the number of successes.

(3) If on an average 1 ship out of 10 do not arrive safely to ports. Find the
mean and the standard deviation of ships returning safely out of atotal of
500 ships

(4) Four coins are tossed simultaneously. What is the probability of getting
(a) exactly 2heads (b) at least two heads (c) at most two heads.

(5) The overall percentage of passes in a certain examination is 80. If 6
candidates appear in the examination what is the probability that atleast 5
pass the examination.

(6) Inahurdle race a player has to cross 10 hurdles. The probability that he
will clear each hurdle is % What is the probability that he will knock

down less than 2 hurdles.
10.4.2 Poisson Distribution :

It is named after the French Mathematician Simeon Denis Poisson
(1781 — 1840) who discovered it. Poisson distribution is also a discrete
distribution.

Poisson distribution is a limiting case of Binomial distribution under the
following conditions.

(i) nthenumber of tridlsisindefinitely large ie., n — .

(ii) p the constant probability of success in each trial is very small
ie,p—0.
(iii) np =\ isfinite where & is a positive real number. When an event

occurs rarely, the distribution of such an event may be assumed to
follow a Poisson distribution.

Definition : A random variable X is said to have a Poisson distribution if the
—A A X
probability mass function of XisP(X=x) = & |_
X

The mean of the Poisson Distribution is A, and the varianceis also A.
The parameter of the Poisson distribution is .

,Xx=0,1,2, ...forsome A >0
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Examples of Poisson Distribution :

(1) The number of apha particles emitted by a radio active source in a
giventimeinterval.

(2) The number of telephone calls received at a telephone exchange in a
giventimeinterval.

(3) The number of defective articlesin a packet of 100, produced by a good
industry.

(4) The number of printing errors at each page of a book by a good
publication.

(5) The number of road accidents reported in a city at a particular junction
at a particular time.

Example 10.22 : Prove that the total probability is one.

o0 o0 e*)\, 7\‘X e*}\. }\‘0 e*}\. }\‘1 e*?\, }\’2
Solution: Y p(X) = X = + + + ...

x=0 x=0 |l |£ |i |£

22
=e™[1+ A+ z" ]=et e = =1

Example 10.23 : If a publisher of non-technical books takes a great pain to
ensure that his books are free of typological errors, so that the probability of any
given page containing atleast one such error is0.005 and errors are independent
from page to page (i) what is the probability that one of its 400 page novels
will contain exactly one page with error. (ii) atmost three pages with errors.

[62=0.1353 ; € %2 = 0.819].

Solution : n=400, p = 0.005
Tnp=2 =i
0] P(one page with error) = P(X = 1)
Il g2l

(if)P(atmost 3 pages with error) = P(X < 3)
3 ef)‘ 21X 3 efz(z)x 5

= g2 (% = 0.8569
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Example 10.24 : Suppose that the probability of suffering a side effect from a
certain vaccine is 0.005. If 1000 persons are inoculated, find approximately the
probability that (i) atmost 1 person suffer. (ii) 4, 5 or 6 persons suffer.

[e7 = 0.0067]
Solution : Let the probability of suffering from side effect bep
n = 1000 , p= 0005, A= np=>5.

(i) P(atmost 1 person suffer) = p(X< 1)
=p(X =0) +p(X=1)
e el
+
o [z
= e‘5(1+5):6><e‘5
= 6 x 0.0067 = 0.0402
(ii) P(4, 5 or 6 persons suffer) = p(X=4) + p(X=5) + p(X = 6)
e’xx4+e’7‘k5+e’7‘k6_e’7‘}»4 [“L . x_z}
4 5 8 |4 > %0
-5 4 -5 4
e°5 5 2 e 5117 10625
24 [1+5 + 30}“ 22 [ } = 144 x 0.0067
= 0.4944
Example 10.25: In aPoisson distribution if P(X=2) = P(X =3) find P(X =5)

=g [1+1]

6

[given e3= 0.050].
Solution : Given P(X=2) = P(X =3)

g™ e*)3

= 22(3-2) =0 As L#0. A =3

A 45 —3 /5
e _¢€ (3) :0.050>< 243:0.101
|§ |§ 120
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Example 10.26 : If the number of incoming buses per minute at a bus terminus
is a random variable having a Poisson distribution with A=0.9, find the
probability that there will be

(i) Exactly 9 incoming buses during a period of 5 minutes

(ii) Fewer than 10 incoming buses during a period of 8 minutes.

(iii) Atleast 14 incoming buses during a period of 11 minutes.
Solution :

. A for number of incomi ng} 0.9
(0 buses per minute] —
. A for number of incoming} _ _
buses per 5 minutes] ~ 09 ¥ = 45

P exactly 9 incoming buses} g9

during 5 minutes |2
e*5x (45)°
i.e, P(X=9) =
El
y fewer than 10 incoming busm} _
(i) during a period of 8 minutes ) ~ P(X <10)
HereA =09x8=7.2
e "2 x (7.2

9
". Required probability =

x=0 |l
(1) curing aperiod o 1L mimies| = PX 2 14)= 1 P(X < 14)
HereA = 11x0.9=9.9
. o 13 99, (9.9
. Required probability = 1- >
x=0 |l
(The answer can be left at this stage).
EXERCISE 10.4
(1) Let X have a Poisson distribution with mean 4. Find (i) P(X < 3)
(i) P(2< X<5) [e%= 0.0183].
(2) If the probability of a defective fuse from a manufacturing unit is 2% in a
box of 200 fuses find the probability that
(i) exactly 4 fuses are defective (ii) more than 3 fuses are defective

[e4=0.0183].
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(3) 20% of the bolts produced in afactory are found to be defective. Find the
probability that in a sample of 10 bolts chosen at random exactly 2 will
be defective using (i) Binomial distribution (ii) Poisson distribution. [e‘2
=0.1353].

(4) Alpha particles are emitted by a radio active source at an average rate of
5ina20 minutes interval. Using Poisson distribution find the probability
that there will be (i) 2 emission (ii) at least 2 emission in a particular 20
minutes interval. [e_5 =0.0067].

(5) The number of accidentsin a year involving taxi driversin a city follows
a Poisson distribution with mean equal to 3. Out of 1000 taxi driversfind
approximately the number of drivers with (i) no accident in a year
(if) morethan 3 accidentsin ayear [e‘3 =0.0499].

10.4.3 Normal Distribution :

The Binomial and the Poisson distribution described above are the most
useful theoretical distribution for discrete variables i.e., they relate to the
occurrence of distinct events. In order to have mathematical distribution
suitable for dealing with quantities whose magnitude is continuously varying, a
continuous distribution is needed. The normal distribution is also caled the
normal probability distribution, happens to be the most useful theoretical
distribution for continuous variables. Many statistical data concerning business
and economic problems are displayed in the form of normal distribution. In fact
normal distribution isthe ‘corner stone’ of Modern statistics.

Like the Poisson distribution, the normal distribution may also be regarded
as a limiting case of binomial distribution. Indeed when n is large and neither
p nor g is close to zero the Binomial distribution is approximated by the normal
distribution inspite of the fact that the former is a discrete distribution, where as
the later is a continuous distribution. Examples include measurement errors in
scientific experiments, anthropometric measurements of fossils, reaction times
in psychological experiment, measurements of intelligence and aptitude, scores
on various tests and numerous economic measures and indication.

Definition : A continuous random variable X is said to follow a norma
distribution with parameter 1 and ¢ (or p and 02) if the probability functionis

1 (x=u)?

f(x) = 1 efz( G) ;-0 <X <o, —o <p <o, and 6>0.
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X ~ N(u, o) denotes that the random variable X follows normal distribution
with mean p and standard deviation c.

Note: Even we can write the normal distribution as X~ N(y, 02) symbolically.
In this case the parameters are mean and variance.

The normal distribution is also called Gaussian Distribution. The normal
distribution was first discovered by De-Moivre (1667 — 1754) in 1733 as a
limiting case of Binomial distribution. It was also known to Laplace not later
than 1744 but through a historical error it has been credited to Gauss who first
made reference to it in 1809.

Constants of Normal distribution :
Mean = p

Variance = 6°
Standard deviation = ©
The graph of the normal curveis ™ X =p ®
shown above. z=0

Fig. 10.3
Properties of Normal Distribution :
(1) Thenorma curveis bell shaped
(2) Itissymmetrical about theline X = p ie., about the mean line.
(3) Mean =Median= Mode =p

(4) The height of the normal curve is maximum at X = n and ﬁ isthe
T

maximum height (probability).
(5) Ithasonly onemode at X=p. .. Thenormal curveisunimodal
(6) Thenormal curveisasymptotic to the baseline.
(7) Thepointsof inflectionareat X=p+ ¢
(8) Sincethecurveissymmetrical about X = p, the skewnessis zero.
(9) Areaproperty :

P(u—-oc<X<pu+o) = 0.6826

P(u—2c < X< pu+20) 0.9544

P(u—-3c <X<pu+30) 0.9973

(10) A normal distribution is a close approximation to the binomial
distribution when n, the number of trials is very large and p the
probability of successiscloseto 1/2i.e., neither p nor g isso small.

(11) It is aso alimiting form of Poisson distribution i.e., as A — o Poisson
distribution tends to normal distribution.
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Standard Normal Distribution :

A random variable X is called a standard normal variate if its mean is zero
and its standard deviation is unity.

A normal distribution with mean p and standard deviation o can be
converted into a standard normal distribution by performing change of scale and
origin.

The formula that enables us to change from the x scale to the z— scale and

. . X—
viceversais Z A

The probability density function of the standard normal variate Z is given by
1

(2 =Le_2 ; —0<Z<oo
\/Ec )
The distribution does not contain any parameter. The standard normal
distribution is denoted by N(0,1).
The total area under the normal probability curveis unity.

o0 o] 0 o]
e, [f)dx= fo@dz=1 = [¢(@dz= [¢(dz = 05
—o0 —0 —o0 0
Area Property of Normal Distribution :

The Probability that a random variable X lies in the interva
(w—o, n+o)isgivenby
nto
Pu-oc<X<p+o)= [ f(x)dx
n—o
s = _ o o Xop
subgtituting X = p—-cand X=p+cinzZ = .

1

P-1<2<1)= [ ¢ (dz /m\
-1
1 e

_ '°° 1 0 1
=2 { ¢ (2)dz (by symmetry) Fig. 10.4

= 2 x 0.3413, (fromthe areatable)
= 0.6826

221



Also P(p —20 < X< pu + 20)

p+2c
= f f(x) dx
-00 5 0 ) [e'e]

n—2c
2
P(-2<Z<2) = f¢ (2dz
-2
2
= 2f(p (2dz, (by symmetry)
0

=2x04772 =0.9544

Similarly P(n-3c < X< p+ 30)
u +3c 3
[ dx = [ (9dz o o

-3 0 3

Fig. 105

pn—-3c -3
2 x0.49865 = 0.9973 Fig. 10.6

Therefore the probability that a normal variate X lies outside the range
p = 3o isgiven by

P(|X-un|>3c) = P(|Z]>3)=1-p(-3<Z<3)=1-0.9973 = 0.0027
Note : Since the areas under the normal probability curve have been tabulated
interms of the standard normal variate Z, for any problem first convert X to Z.

The entries in the table gives the areas under the normal curve between the
mean (z = 0) and the given value of z as shown below :

Therefore entries corresponding to

negative values are unnecessary because

the norma curve is symmetrical. For
-0 o0

example 0 z
P(0<Z<12)= P(-1.2<7Z<0)

Fig. 10.7

Example 10.27 : Let Z be a standard normal variate. Calculate the following
probabilities.

(i) P0<z<12) (i) P(-12<z2<0)
(iii) Areatotheright of Z=1.3 (iv) Areatotheleftof Z=15
(V) P(-1.2< Z2<25) (vi)P(-1.2< Z<-0.5) (vii)P(1.5< Z2<£25)
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Solution :

() P0<Z<12)

P(0<Z<12) = areabetween /%
Z=0andZ=12 o T ) o
= 03849
Fig. 10.8
(i) P(-12<Z2<0) /@\
P(-1.2<Z<0) = P(0<Z<12) -0 =12 20 oo
by symmetry
= 0.3849 Fig. 10.9
(iii) Areatotheright of Z=1.3
P(Z>1.3) = areabetween Z=0t0Z =0 /l\%\
—areabetweenZ=0t0Z=1.3 - 720 2213 *
= P(0<Z<w)-P0<Z<13)
= 0.5-0.4032= 0.0968 Fig. 10.10
(iv) Areaof theleft of Z=1.5
= P(-0<Z<0)+P(0< Z<15) ~ 2=0 z=15 ®
= 05+0.4332
= 0.9332 Fig. 10.11
(V)P(-1.2< Z<25)
= P(-12<Z<0)+P(0<Z<25) /&\
= P(0< Z<12)+P(0< Z<25) - -
[by symmetry] -12z2=0 25
= 0.3849 +0.4938
= 0.8787 Fig. 10.12
(vi)P(-1.2< Z<-05)
= P(-1.2<Z<0)-P(-05<Z<0) /g‘\
= P(0<Z<12)-P(0<Z<0.J5) - 7770 o
[due to symmetry] ¢=122=3
= 0.3849 —0.1915 = 0.1934 Fig. 10.13
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(vii)P(1.5< 2<25)
Required area
=P(0< Z<25) -P(0< Z<15) = 04938 - 0.4332= 0.0606
Example 10.28 : Let Z be a standard normal variate. Find the value of ¢ in the
following problems.
(i) P(Z<c) =0.05 (i) P(c<Z<c)=094
(ili) P(Z>c) =0.05 (iv)P(c< Zz<0)=0.31

Solution :
() P(Z<c)=0.05i.e,P(-0<Z<c)=005
Asareais< 0.5, cliestotheleft of Z=0. .45 J
From the area table Z value for the area ™ c 0 *
0.45 is1.65. ..c =-1.65 Fig. 10.14

(i) P(-c<Z<c)=0.94
As Z=-c and Z=+c lieat equal distancefromZ =0,

. Wehave P(0<Z<c)= %‘ = 0.47. g

Z value for the area 0.47 from the table m

is1.88 ... ¢= 1.88 and-c=-1.88 e z=c z=0 z=c *

Fig. 10.15
(i) P(Z>c)=0.05 = P(c<Z<x)=0.05
Fromthe datait isclear that c liesto theright of Z=0
Theareatotheright of Z=0 is0.5
PO<Z<w)- P(0O<Z<c)=0.05

0.5- P(O </Z< C) =0.05 45 N
~ 05 -005=P0<Z<c) z=0 z=c
045 =P(0<Z<c) Fig. 10.16

From the areatable Z value for thearea 0.45 is1.65 .. ¢c=1.65
(iv)P(c<z<0) =031

As cisless than zero, it liesto the left of Z = 0. From the area table the Z
valuefor the area0.31is0.88. Asitintotheleftof Z=0, c=-0.88

Example 10.29 : If X is normally distributed with mean 6 and standard
deviation5find. (i) P(O<X <8) (ii) P(|X-6]<10)
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Solution: Given u=6, ¢ =5
(i) P(0O<X <38

Weknow that Z =X—;E
0-6

When X=0, Z=

-6
T = - 1.2 - 7=12 z=0 z=4 @
2

8-6

When X=8, Z= 5 =t = 0.4 Fig. 10.17

S P(0<X<8) =P(-1.2<Z<0.4)
= P(0< Z<1.2) + P(0 < Z < .4) (due to symmetry)
= 0.3849 + 0.1554
= 0.5403
(i) P(|X-6]<10) = P(-10< (X-6) <10) = P(-4<X<16)

_4-6 -10
When X=-4, Z=—¢g— = 5 = -2 /@%\
16-6 _ 10

When X=16, Z==¢g— =& =2 T =2 =0 =2 ®

P(- 4<X<16) = P(-2<Z<2) Fig. 10.18

= 2P(0<Z <2) (dueto symmetry)
2(0.4772) =0.9544
Example 10.30 : The mean score of 1000 students for an examination is 34 and
S.D is 16. (i) How many candidates can be expected to obtain marks between
30 and 60 assuming the normality of the distribution and (ii) determine the limit
of the marks of the central 70% of the candidates.
Solution: u=34, o =16, N=1000

(i) P(B0<X<60) ; Z :X—;E

B 30-u _ 30-34
-4 -0

o0

=16 = ~0.25 x 230 x=34 x 260
= g(c)).fsm - Fig. 10.19
Z="16 “~ 1 —- 1625
Z, ~ 1.63 (app.)

P(-0.25<Z<1.63) =P(0<Z<0.25) +P(0<Z<1.63) (dueto symmetry)

225



=0.0987 + 0.4484 =0.5471

No of students scoring } — 05471 x 1000 = 547

between 30 and 60
(i) limit of central 70% of Candidates:
Value of Z; from theareatable} - 104
for thearea0.35]
[ asZ, liestoleft of Z = 0] 35 .35
Similarly Z, = 1.04 R
Fig. 10.20
21=XI34 = 1.04 zzz)(IG34 = - 1.04
X, =16x1.04 +34 X-34=-104 x16 +34
=16.64+ 34 X, =-1664+ 34
X1 =30.64 X, = 17.36

‘. 70% of the candidate score between 17.36 and 50.64.

Example 10.31 : Obtain k, p and o® of the normal distribution whose
probability distribution function is given by

f) = ke 2t 5 < X <o
Solution : Consider

2%+ ax = 2(%-2)=-2[(x-1)° -1 =-2(x-1)°+2
L g Prax_ 2 e—2(x—1)2
1 (x-1? ;(x_—l)z
2 U4 2\12
=€ e =€’ e

Comparing it with f(x) we get

W) 1
ker +AX _

1(x-1)? 1(x-p)?
:>ke2e2(1/2j S ez(")
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Example 10.32 : The air pressure in a randomly selected tyre put on a certain
model new car is normally distributed with mean value 31 psi and standard
deviation 0.2 psi.

(i) What is the probability that the pressure for a randomly selected tyre
(a) between 30.5and 31.5 psi (b) between 30 and 32 psi

(i) What is the probability that the pressure for a randomly selected tyre
exceeds 30.5 psi ?

Solution: Givenp=3lando =0.2

() (@ P@E05<X<315) : Z _X-u

(¢}
305-31 -05
When X = 305,Z =55~ =155 =25 /@\\
_ _315-31_05 _ P TX=305 p=31 x=315
When X = 315,Z =55 =¢5 =25 z

Fig. 10.21
*. Required probability
P(30.5<X <315) =P(-25<Z<25)
=2P(0<Z<25)
[since due to symmetry]
= 2(0.4938) = 0.9876
(b) P(30<X<32)

30-31_-1

When X = 32, 22—0.2 =02 =

Fig. 10.22
P(30 < X < 32) = P(-5< Z < 5) = areaunder the whole curve =1 (app.)
(if) When x =305, z=222-31_ 05 5

P(X >30.5) = P(Z> - 2.5)

=05+04938 = 09938 =5

oo

Fig. 10.23
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(4)

©)

(6)

(7)

(8)

EXERCISE 10.5

If X is a normal variate with mean 80 and standard deviation 10,
compute the following probabilities by standardizing.

(i) P(X<100) (i) P(X<80)

(iii) P(65< X <100) (iv) P(70< X)

(v) P(85<X<95)

If Zisastandard normal variate, find the value of ¢ for the following

(i) P(0<Z<c)=0.25 (i) P(-c<Z<c)=0.40

(iii) P(Z>¢c)=0.85

Suppose that the amount of cosmic radiation to which a person is
exposed when flying by jet across the United States is a random
variable having a normal distribution with a mean of 4.35 m rem and a
standard deviation of 0.59 m rem. What is the probability that a person

will be exposed to more than 5.20 m rem of cosmic radiation of such a
flight.

The life of army shoes is normally distributed with mean 8 months and
standard deviation 2 months. If 5000 pairs are issued, how many pairs
would be expected to need replacement within 12 months.

The mean weight of 500 male students in a certain college in 151
pounds and the standard deviation is 15 pounds. Assuming the weights
are normally distributed, find how many students weigh (i) between
120 and 155 pounds (ii) more than 185 pounds.

If the height of 300 students are normally distributed with mean 64.5
inches and standard deviation 3.3 inches, find the height below which
99% of the student lie.

Marks in an aptitude test given to 800 students of a school was found to
be normally distributed. 10% of the students scored below 40 marks and
10% of the students scored above 90 marks. Find the number of
students scored between 40 and 90.

Find ¢, p and 2 of the normal distribution whose probability function

2
isgivenby f(x) =ce™ *¥, <X <o,
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OBJECTIVE TYPE QUESTIONS

Choose the correct or most suitable answer :

D
)

©)

(4)

)

(6)

(7)

(8)

The gradient of the curvey = — 2C +3x +5ax=2is

(1) -20 (2) 27 (3) -16 4 -21
Therate of change of area A of acircle of radiusr is
(1) 2nr @2“% @nﬂ% wn%

The velocity v of a particle moving along a straight line when at a

distance x from the origin is given by a + bv’ = x> whereaand b are
constants. Then the acceleration is

b a X X
1% @5 G b 4 3
A spherical snowball is melting in such a way that its volume is

decreasing at arate of 1 cm® / min. The rate at which the diameter is
decreasing when the diameter is 10 cmsis

(1)—cm/m|n 2 —cm/mm

3 —cm/mln 4 —cm/mm

The slope of the tangent to the curvey = 3x°+3sinxatx=0is
13 (22 31 4-1
The dope of the normal to the curve y = 3% a the point whose
x coordinateis 2 is
1 1 -1 1
D 13 (2714 G 12 413

The point on the curvey = 2x% — 6x — 4 at which the tangent is parallée
tothex—axisis

w(37") elz7) ez 367

3
The equation of the tangent to the curvey = X at the point (-1, 1/5)

is
(Dby+3x=2 (2Q5y-3x=2 () 3x-5y=2 (4 3x+3y=2
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9)

(10)

(11)

(12)

(13)

(14)

(15

(16)

(17)

The equation of the normal to the curve 6 = l at the point (-3, — 1/3) is

(1)36=27t-80 @) 59—27t—80
(3) 30 =27t+80 (4)e=l

2 X )f
Theanglebetweenthecurv&82—5+ 9 —1and§ g =
1 z 2 § (©) g (4) §
The angle between the curvey = €™ andy = e "™ for m>1is

2m 2m

1) tan 15— 2)t ‘l( )
(1) tan (mz—lj @t e
3) tan ! 4t ‘1( )
(3) tan (1 mzj @tan = {2

The parametric equations of the curve x23 + y2 3 —a?Pae

Q) x=asn®o : y =acos’ 0 (2 x= acos>0; y= asin®0

3 x=a>sino ; y =a°cos0 4 X=a°coso ; y =a’sin®

If the normal to the curve x2° + y2/ 3 = a3 makes an angle 6 with the
X — axis then the slope of the normal is

(1) —cot6 (2) tan6 (3) —tan 6 (4) cot6

If the length of the diagona of a sguare is increasing at the rate of
0.1 cm / sec. What is the rate of increase of its area when the side

isE cm?

\/é H
(1) L5cmP/sec (2) 3cm?sec  (3) 32 cmP/sec  (4) 0.15 cm?/sec
What is the surface area of a sphere when the volume is increasing at
the same rate as its radius?

® 1 @3 (3) 4 @5

For what values of x is the rate of increase of x5 — 2x% + 3x + 8 is twice
the rate of increase of x

w[3-39 @F3 ol @by

The radius of a cylinder is increasing at the rate of 2cm / sec and its
atitude is decreasing at the rate of 3cm / sec. The rate of change of
volume when the radius is 3cm and the altitudeis 5cmis

(1) 23n (2) 33n (3) 43n (4) 53n

230



(18)

(19)

(20)

(21)

(22)

(23)

(24)

(25

(26)

(27)

Ify=6x-— % and x increases at the rate of 5 units per second, the rate of
change of slopewhen x =3 is

(1) — 90 units/ sec(2) 90 units/ sec

(3) 180 units/ sec (4) — 180 units/ sec

If the volume of an expanding cube is increasing at the rate of
4cm?® / sec then the rate of change of surface area when the volume of
the cubeis 8 cubiccmis

D 8cm?/sec 2 16cm? / sec 32 cm? / sec 4 4 cm?/ sec

The gradient of the tangent to the curvey = 8 + 4x — 2 at the point
where the curve cutsthe y-axisis

D8 (24 (30 (4 -4
The Angle between the parabolasy2 =xandx° = y at the originis
1) 2tant @ ) tan @ 35 @7

For the curve x = €' cost ; y=etsint the tangent lineis parald to the
x-axiswhentisequal to

D-% @7 30 @5

If a normal makes an angle 6 with positive x-axis then the slope of the
curve at the point where the normal isdrawn is

(1) — cot © (2)tan 6 3)-tan (4) cot 6

The value of ‘@ so that the curvesy = 3¢ and y = % e * intersect
orthogonaly is

(-1 @1 (33 @3

If s=t3— 4t% + 7, the velocity when the acceleration is zero is

(0] % m/sec ()] _—3}6 m/sec (3) % m/sec 4 _—? m/sec

If the velocity of a particle moving along a straight line is directly
proportional to the square of its distance from a fixed point on the line.
Then its acceleration is proportional to

Vs @& 3 @ s

The Roll€e' s constant for the functiony = x% on [-2,2]is

&L (2)0 (3)2 (@-2
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(28)

(29)

(30)

(31)

(32)

(33)

(34)

(35

(36)

The‘c’ of Lagranges Mean Value Theorem for the function
f(x) =x>+2x-1; a=0, b=1is

(-1 @1 (3)0 @3
The value of ¢ in Rolle’'s Theorem for the function f(x) = cos)—z( on
[w, 3n] is
(10 2) 2n % @
The value of ‘¢’ of Lagranges Mean Value Theorem for f(x) =~/x when
a=landb=4is
3 @3 @3 @7
lim i is=
e
X— 00
(12 20 (3) 1
Aot
x“—>mo cf—d*
log (a/b
(1) @0 @looSg @ g
If f@ =2, f'(@ =1;09@ =-1;9g'(@ = 2 then the value of
i 9(x) f(a) — g(@) f(x) .
im _a is
Xx—>a
15 (-5 )3 (4-3
Which of the following function isincreasing in (0, =)
@ ¢ @5 @~ %2
The function f(x) = 2 — B + 4 isincreas ngin
Q) (-, 1) (2) (1,4 (3) (4, ) (4) everywhere
The function f(x) = *2 is decreasi ngin
(1) (= o, ) 2 (=0 (3)(0x) (4) (-2, )
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(37)

(39)

(39)

(40)

(41)

(42)

43

(44)

(45)

(46)

(47)

Thefunctiony =tan x— xis

(1) anincreasing functionin (0 , g)

(2) adecreasing functionin (0 , %)

(3) increasing in(o,%) and decreasing in (%%)

(4) decreasing in (0%) and increasing in (ﬁg}

In a given semi circle of diameter 4 cm a rectangle is to be inscribed.
The maximum area of the rectangleis

12 24 (3)8 (4) 16

The least possible perimeter of arectangle of area 100n7? is

(1) 10 (2) 20 (3) 40 (4) 60

If f(x) = X2 — 4x + 5 0n [0, 3] then the absolute maximum valueis
(12 @3 (3 4 (45
Thecurvey=—-¢€¥is

(1) concave upward for x>0 (2) concave downward for x >0

(2) everywhere concave upward  (4) everywhere concave downward
Which of the following curvesis concave down?

Q)y=-x @y=x @y=e  (@y=x2+2x-3

The point of inflexion of the curvey = isat

(1) x=0 (2)x=3 (B x=12 (4) nowhere
Thecurvey = axC + bx? + cx + d has a point of inflexion at x = 1 then
)a+b=0 (2a+3b=0 (3)3a+b=0 4 3a+b=1

ou
Y ou.
If u=x’then X |sequal to

@yt (@ulogx (3 ulogy @ xy* 1

4
+
Ifu=sin? (zz—ﬂgj and f = sin u then f is a homogeneous function of

degree
(1o 21 (32 (44
If u:; , thenx®+y@isequal to
A ,x2+y2 ox oy
D % u 2 u 3 % u 4)-u
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(49)

(49)

(50)

(51)

(52)

(53)

(54)

(55

(56)

The curvey2 x-2)= X (1 +x) has

(1) an asymptote parallel to x-axis (2) an asymptote parallel to y-axis
(3) asymptotes parallel to both axes (4) no asymptotes

If x=rcosB,y=rsno, then%(isequal to

(1) sec 6 (2)sno (3) cos 6 (4) cosec 6

| dentify the true statements in the following :

(i) If acurveis symmetrical about the origin, then it is symmetrical
about both axes.

(i) If a curve is symmetrica about both the axes, then it is
symmetrical about the origin.

(iii) A curvef(x, y) = 0issymmetrical about theliney = x
if f(x,y)=1(y, x).

(iv) For the curve f(x, y) = O, if f(x, y) = f(— vy, — X), then it is
symmetrical about the origin.

(2) (i), (iii) (2 (i), (iv) (3 (), (iii) (@) (i), (iv)
Ifu=log (% then x%+ yg—; is
(1)0 @u (3) 2u (4 u?

The percentage error in the 11th root of the number 28 is approximately
times the percentage error in 28.

m% @ﬁ (3) 11 (4) 28

The curve a%/2 =x° (a2 - x2) has

(1) only oneloop betweenx=0and x=a

(2) two loopsbetweenx=0andx=a

(3) twoloopsbetweenx=—-aandx=a

(4) noloop

An asymptote to the curve y2 (a+2x) = X2 (Ba—x)is

(1) x=3a (2yx=-a/2 ((I)x=al2 @ x=0
In which region the curve y2(a +X) = X (3a—x) doesnot lie?

(D x>0 (200<x<3a (I x<—-aandx>3a (@4 -a<x<3a
2

o ou .
If u=ysinx, then axaylsequal to
(1) cos x (2) cosy (3) sinx HO0

234



(57)

(58)

(59)

(60)

(61)

(62)

(63)

(64)

(65)

_ Q u_ ou.
Ifu—f(X thenxax+yay|sequal to

@o 21 (3)2u @ u
The curve 9y2 = x2(4 - x2) is symmetrical about
(1) y-axis (2) x-axis B y=x (4) both the axes

The curve ay2=x2 (3a-—X) cutsthe y-axis at
(Dx=-3a,x=0 (29x=0,x=3a () x=0,x=a (4 x=0

COSS/3X

/2
The value of dxis
vau f0055/3x+s'n5/3x X!
0
T T
OF @7 (3)0 GF:

W2 §nx—cosx . |
The value of fm dxis

0

o5 0 @7 @n

1
The vaue of fx(l—x)4 dxis

0
1) 2= (32 @)=
/2 -
The value of nf (2 328(9() dxis
—7l2
(o (2) 2 (3 log2 (4 log4

T
The value of fsin4x dxis

0
(1) 3n/16 (2) 3/16 (3)0 (4) 3n/8

/4 3
The value of fcos 2x dxis
0

W3 @3 (30 @z
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(66)

(67)

(68)

(69)

(70)

(71)

(72)

(73)

(74)

(75

T
The value of f sin®x cos>x dx is

0

Q) (2) m/2 (3) m/4 40
The area bounded by the liney = X, the x-axis, the ordinatesx =1, x =2
is

3 5 1 7
D3 23 3 43
The area of the region bounded by the graph of y = sin x and y = cos x
betweenx=0andx=%is

DM~2+1 242-1 () 2f2-2 (@ 2n2+2
2

The area between the dlipse? + o2 =landitsauxillary circleis
(1) nb(a - b) (2) 2ra(a—-b) (3) ra(a-b) (4) 2zb (a-Db)
The area bounded by the parabol ay2 =x and itslatus rectum is
4 1 2 8
D3 @3 3 43
The volume of the solid obtained by revolving 5 gt ﬁ = 1 about the
minor axisis
(1) 48n (2) 64n (3) 32n (4) 128 =
The volume, when the curvey =\/3 + »2 from x = 0 to X = 4 is rotated
about x-axisis
(1) 100 & =g 100 3) 130 T @3 100
The volume generated when theregion bounded by y = x, y = 1, x=0is
rotated about y-axisis
T T T 2n
D3 @3 3 Oy
Volume of solid obtained by revolving the area of the ellipse
.Y

2 + i 1 about major and minor axes are in the ratio

(1)b2:a (2) a°: b? (3a:b (4b:a
The volume generated by rotating the triangle with vertices at
(0, 0), (3, 0) and (3, 3) about x-axisis
(2) 18x (2) 2n (3) 367 (4) 9n
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(76) Thelength of the arc of the curve x22 + y?3= 4is

(77)

(78)

(79)

(80)

(81)

(82)

(83)

(84)

(2) 48 (2) 24
(3) 12 (4) 96
The surface area of the solid of revolution of the region bounded by
y=2x, X=0andx = 2 about x-axisis
(1) 8\5n 2257 (35n (4) 4\/5n
The curved surface area of a sphere of radius 5, intercepted between
two parallel planes of distance 2 and 4 from the centre is
(1) 20n (2) 40n (3) 10n (4) 30n
The integrating factor of % + 2¥ =e¥is
(1) log x ) ¥ 3) & (4) x
If cos x isan integrating factor of the differential equation % +Py=0Q
thenP =
(1) — cot x (2) cot x (3) tan x (4) —tanx
The integrating factor of dx + xdy = €Y sec’y dy is
(1) & 2e* 3) ¢ 4 e
Integrating factor of %+ x |§g % Y= % is
(1) & (2) logx (3 (@ e
Solution of g—i(ﬁ mx =0, wherem<0is
(1) x=ce™ Qx=ce™ (Bx=nmy+c (4 x=c
y=CX— isthe general solution of the differential equation
(D) (Y)*=xy +y=0 @y'=0
@y =c @) +xy+y=0

2
85) The differential equation (%) +5yY3 = x is
( eq d Yy

y,
(1) of order 2 and degree 1
(2) of order 1 and degree 2
(3) of order 1 and degree 6
(4) of order 1 and degree 3

(86) Thedifferential equation of all non-vertical linesin aplaneis

0 L=0 (2)j—zx¥=o @L=m (4
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(87) Thedifferential equation of all circleswith centre at the originis
(D) xdy+ydx=0 (2) xdy—-ydx=0
(3 xdx+ydy=0 (4 xdx—-ydy=0

(88) Theintegrating factor of the differential equation % +py=Qis

(1) J pelx @ Qi (3 o O (4) e /P

(89) The complementary function of (D2 +1y= s
(1) (Ax+B)e  (2) Acosx+Bsinx (3) (Ax+B)e® (4) (Ax + B)e ¥
(90) A particular integral of (D% — 4D + 4)y = s

X2

(1) % (2) e (3) xe > @562
(91) Thedifferential equation of the family of linesy = mxis
d
Dg=m (2) ydx—xdy=0
(3)%20 (4) ydx+xdy=0
13
(92) The degree of the differential equation™\ /1 + (%Q = d_zy
\ dx?
M1 (22 33 (46
3 2/3
(&) ]
X
(93) The degree of the differential equation ¢ = T wherecisa
ax
constant is
D1 23 (-2 (42

(94) The amount present in a radio active element disintegrates at a rate
proportional to its amount. The differential equation corresponding to
the above statement is (k is negative)

dp_k d d d
(D d=p @F=K @ g=kp @ g =-
(95) Thedifferential equation satisfied by all the straight linesin xy planeis
d d d d
(1) g = aconstant (2)d—)2(§= @y+g= (4)d—zx¥+y=o
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(96)

(97)

(98)

(99)

(100)

(101)

(102)

(103)

(104)

If y = ke then its differential equation is

d d d d
(1) =1y @@=k @gE+tky=0 @ g=e
The differential equation obtained by eliminating a and b from
y=ae>+be Fis

(1)—ZY oy dy gy-o (4)3—2Y+9x=o

d _ d _ d
o2 V7O Pam =0 O g2 9w0 Wye

The differential equation formed by eliminating A and B from the
relationy = € (Acosx +Bsinx) is

1)y, +y;=0 (2 y,-y1=0

Q) y,-2y;+2y=0 (4 y,-2y;-2y=0
d —

|fa§:§—+yythen

) 2xy+y?+x°=c @ X +y-x+y=c

Q)X +y?-2xy=c (A2 —y?—2xy=c

If f/(x) =[x and f(1) = 2 then f(x) is

@ -5 (x\x+2) @ (x\x+2)

35 (x\x+2) @ 5x (x+2)

On putting y = vx, the homogeneous differential equation
xzdy + y(x + y)dx = 0 becomes

(1) xdv + (2v +VA)dx = 0 (2) vdx + (2x + x2)dv =0

(3) VVdx — (x + x9)dv=0 (4) vdv + (2x + x%)dx = 0

The integrating factor of the differential equation % —ytanx=cosxis
(1) sec x (2) cos x (3) € (4) cot x
TheP.l. of (3D? + D - 14)y = 136¥is

(1) 26x € () 13xe®  (3) xe& (4) %2 &

The particular integral of the differential equation f(D)y = €® where
f(D) = (D -a) g(D), 9(a) = Ois

ax ax
(1) me™ Q5w  Oo@e™ @ 5@
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(105)

(106)

(107)

(108)
(109)
(110)
(111)
(112)

(113)

(114)

(115)

(116)

(117)

(118)

Which of the following are statements?

(i) May God blessyou. (ii) Rose is aflower

(iii) Milk iswhite. (iv) 1 isaprime number

(@) @), (i), (i) () (), (i), (v) () (i), (iii), (iv) (4) (i), (iii), (iv)
If acompound statement is made up of three simple statements, then the
number of rowsin thetruth tableis

(1)8 (26 (3) 4 (42

If pisT and qisF, then which of the following have the truth value T ?
(pvq (i)~pva  (ii)pv~q (ivipr~q
(1) @), (i), (i) (2) (i), (i), (iv)

(3) (i), (i), (iv) (4) (ii), (iii), (iv)

The number of rows in the truth table of ~ [p A (~ )] is

(D2 (2 4 (36 48
The conditional statement p — qis equivalent to

Dpvq @pv~q (3~pvq @pnrq
Which of the following is a tautology?

Dpvq @pnrq Bpv~p @pr~p
Which of the following is a contradiction?

Dpva @pnrq G pv~p @pnr~p

p <> gisequivalent to

Dp—->a Qag—»p BQ(P—->9v@—>p APE->aA@—>p)
Which of the following is not a binary operation on R

(Da*b=ab (a*b=a-b

(3)a* b=+/ab @) a* b=1/a?+ b

A monoid becomes a group if it also satisfies the

(2) closure axiom (2) associative axiom

(3) identity axiom (4) inverse axiom

Which of the following is not a group?

(D) (Zy. +n) 2 (Z+) Q) () (4 (R +)

In the set of integers with operation * defined by a* b=a+ b — ab, the
valueof 3* (4* 5)is

(1) 25 (2) 15 (3) 10 45
Theorder of [7] in(Zg, +g) iS

D9 (26 33 1

In the multiplicative group of cube root of unity, the order of w2 is
(1) 4 3 )2 1
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(119) Thevalueof [3] +44 ([5] +11 [6]) is

D [0 @ 1] Q2 @[3
(120) Inthe set of real numbers R, an operation * is defined by

a* b="/a®+b?. Thenthevaueof (3* 4)* 5is

(1)5 (2) 52 (3) 25 (4) 50
(121) Which of the following is correct?

(1) Anelement of agroup can have more than oneinverse.

(2) If every element of a group is its own inverse, then the group is
abelian.

(3) The set of al 2 x 2 real matrices forms a group under matrix
multiplication.

(4 (@*byt=al*pblfordlabeG
(122) The order of — i in the multiplicative group of 4™ roots of unity is

Q4 (i) 3 32 @1

(123) In the multiplicative group of nth roots of unity, the inverse of ot is
(k<n)
(1) o™ o (3" @ o™

(124) Inthe set of integers under the operation * definedby a* b=a+b -1,
the identity element is

Mo (1 ) a (4b

kx2,0<x<3
0 ,esewhere

(125) If f(x) = { is a probability density function then the

value of kis
o 3 @ g ® 3 915
(126) If f(x) = % 161)(2,—oo<x<oo

isap.d.f of acontinuous random variable X, then the value of A is
1) 16 (2 8 (3) 4 41
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(127) A random variable X has the following probability distribution

X 0 1 2 3 4 5
PX=x)| /4| 2a | 3a | 4a | ba | V4
ThenP(1<x<4) is

10 2 1 1
D 31 2 7 G 12 43
(128) A random variable X has the following probability mass function as
follows:
X -2 3
_ A A A
PX=x | & 4 | 12

Then thevaueof A is
D1 (2 2 3 3 44

(129) X is a discrete random variable which takes the values 0, 1, 2 and
P(X=0) :%g’ P(X=1) :1_6139 then the value of P(X=2) is

145 24 2 143
Wi @ O @359
(130) A random variable X has the following p.d.f
X 0| 1|2)|3]|4]|5 6 7

P(X=x)| O kK |2k |2k | 3|k | 2k% | 7K +k
Thevaueof kis

M 3 @ 35 (3 0 (@)-1or3g
(131) Given E(X +¢) =8and E(X - c) =12 thenthevaueof cis
1@ -2 24 (3) -4 42
(132) X is a random variable taking the values 3, 4 and 12 with probabilities
% , %1 and % Then E(X) is
1) 5 27 (3) 6 43
(133) Variance of the random variable X is4. Itsmeanis 2. Then E(X2) is
D 2 (2 4 (3 6 (4)8
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(134) n, =20, py' = 276 for adiscrete random variable X. Then the mean of
the random variable X is

(1) 16 (2 5 ) 2 41
(135) Var (4X +3) is
@7 (2 16Va (X) (3)19 4o
(136) In 5 throws of a die, getting 1 or 2 is a success. The mean number of
successesis
W32 @ 3 ® 2 OF:

(137) The mean of abinomial distribution is 5 and its standard deviation is 2.
Then the value of n and p are

0z ey 0Es) @k

(138) If the mean and standard deviation of abinomial distribution are 12 and 2
respectively. Then the value of its parameter pis

M 2 @ 3 @ 2 @5

(139) In 16 throws of a die getting an even number is considered a success.
Then the variance of the successesis

(1) 4 (2 6 3) 2 (4) 256

(140) A box contains 6 red and 4 white balls. If 3 balls are drawn at random,
the probability of getting 2 white balls without replacement, is

() 55 2 (3) 2t 0=

(141) If 2 cards are drawn from awell shuffled pack of 52 cards, the probability
that they are of the same colours without replacement, is

1 26 25 25

D3 = ©= @102
(142) If in aPoisson distribution P(X =0) =k then thevarianceis
1 1
(1) logi (2) logk (3 ¢ @i

(143) If arandom variable X follows Poisson distribution such that E(XZ) =30
then the variance of the distribution is

@) 6 @ 5 @3) 30 (4) 25
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(144) Thedistribution function F(X) of arandom variable X is
(1) adecreasing function
(2) anon-decreasing function
(3) aconstant function
(4) increasing first and then decreasing
(145) For a Poisson distribution with parameter . = 0.25 the value of the
2" moment about the origin is
(1) 0.25 (2) 0.3125 (3) 0.0625 (4) 0.025
(146) In a Poisson distribution if P(X = 2) = P(X = 3) then the value of its
parameter A is

1) 6 2 2 3) 3 4o
o0
(247) 1If f(xX) isap.d.f of anormal distribution with mean p then ff(x) dx is
— o0

11 (2 05 3 0 (4 0.25

(148) The random variable X follows normal distribution
172 (x - 100)
f(x) =ce 25 Thenthevaueof cis

() 2 @) ﬁ (3) 5+/2n (4)%

n
(149) If f(X) isap.d.f. of anormal variate X and X ~ N(u, 02) then f f(x) dx
— 0
is
(1) undefined 21 (3) .5 4-.5

(150) The marks secured by 400 students in a Mathematics test were normally
distributed with mean 65. If 120 students got more marks above 85, the
number of students securing marks between 45 and 65 is

(1) 120 (2) 20 (3) 80 (4) 160
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(4)

ANSWERS

EXERCISE 5.1
()100m/sec  (ii)t=4 (i) 200m  (iv) - 100 m/ sec
~12,0 3) (i) 72km/hr (i) 60 m

1.5936°c / sec (5) decreasing at therate of 1.6 cm/ min
195

(6)\/—9km/hr (7)0.3m2/sec (8)\/—3m/m|n(9)—ft/m|n

)

)

®)
(®)

9)

)

)

)

)

EXERCISE 5.2
(i) 8x+y+9=0 (i) 2x-y-n/2=0
Xx—8y+58=0 X+2y—-3n/2=0
(i) y=2 _ T
2 W) y-(2+1) = @2++2) (x-3)

y- (\/§+1)—2 \/—2( )

i D (.

2,3)and(-2,-3) (4 (i) (1,0)and (1, 4) (i) (3,2) and (-1, 2)
2X+3y+26=0 (6) x+9y+20=0
e:tan’l[ loga-logh H

l+loga logb
EXERCISE 5.3
(i) True, czg (i) Fails, f(0) = f (1)
\3

(iii) Fails, At x = 1 the function is not differentiable (iv) True,c=+ 2
©,1)

EXERCISE 5.4
(i) True,c:% (i) True, c=+/2
—1+
(iii) True, c=146@

OOI\I

(iv) Fails,Functionisnot differentiableat x=0 (v) True,
16
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EXERCISE 5.5

2X 2%)2 2x)° x*
) 1+E+£—|£L+£—|§)—+... (2 1-X+73+ ...
3 5
(B) 1-x+x2+... (4)x+X§+%+...
EXERCISE 5.6
Q-7 (2 2 B 1 (4 n2"~1t (5) 2
(6) -2 7 0 | 2 9 0 (10) e
(11)1 (12) 1 (13) 1
EXERCISE 5.7
(3 (i) increasing (ii) st.increasing (iii) st. decreasing

(iv) st.increasing  (v) increasing

(5) (i) increasingin (- o, - 1/2] and decreasingin[-1/2, «)
(ii) increasingin (- o, — 1] U [1, «) and decreasing in [— 1, 1]
(iii) strictly increasingon R
(iv) decreasingin[o, %} v [S—g,Zn} increasingin[%,S—gJ
(v) increasingin [0, ]

(vi) increasingin [% , g} and decreasing in [0, ﬂ

EXERCISE 5.9
Critical numbers Stationary points
@D @) x=3 (% > %)
@iy x=x1 (1,-1)and(-1,3)
(i) x=0,4, % (4,0) and (% , (%4/5 (2—70>Z)
(iv) x=0,-2 (0,1) and (— 2,—%)
v) 0=07%.% 3?7“ . 0,0) (ﬁ,l) (g o) (374“ 1) (m, 0)
(vi) 0=n (m, m)
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)

@ (

)

)
)

)
(4)
®)
(6)

Absolute maximum

@B 5

@iy 2
(iii) 66
(iv) 3

v 2
(vi) 2
(vii) m+2

L ocal maximum

O 37
@iy 12
@iii) O
(iv) Nil
v) 1

Absolute minimum
1
-7
-15

= NIH%‘

T
_6_\/§

L ocal minimum

-2
33
~19
27
-9
1
Nil

(vi)  No maximum and no minimum

50, 50 (2) 10, 10

Concave upward
(- 1)
R
S

(—o0,-1) U (1, )

.7

(_ 21 1)

(3

-11)

247

EXERCISE 5.10
5) (V2r.«2r)  (6) 20\5

EXERCISE 5.11
Convex upward Points of inflection

(1.0)
Nil
305

' 54
(1,-5),(-1,-5)

oluo

(= 0, — 2) U (1, 0) (1,9), (- 2, 48)



EXERCISE 6.1

(1) ()dy=5¢<%dx  (ii)dy= % X~ 3dx

(iv)dy = |:(2X Z 3)2} dx

(vi) dy = (x sec?x + tan X) dx

2 (i) dy=—2xdx;dy=-5

(iii) dy = 6x (X* + 5)?dx ; dy = 10.8 (iv) dy=—2\/%(

(v) dy=-sinxdx ; dy=-0.025
(3) (i) 6.008 (app.)
(4) (i) 270 cubiccm (i) 36 cm?

xg2x2+ 1)

(v) dy = 2 cos 2x dx

(i) dy = (4x° — 6x+ 1) dx; dy=2.1

dx; dy=-0.01

(i) 0.099 (app.) (iii) 2.0116 (app.) (iv) 58.24 (app.)
(5) (i) 0.96 T cm® (i) 0.001667

EXERCISE 6.2
No. Existence Symmetry Asymptote L oops
2 -1<x<1 Both axes and | No asymptotes | 2 loops
hence origin between — 1
and 1
3 —2<x<6 X-axis X=-2 1 loop between
Oand 6
4 x<1 X-axis No asymptotes | 1 loop between
Oand1
5 X=bandx>a | x-axis No asymptotes | No loops
EXERCISE 6.3
3 ( f 3)
@ o @:2x+3y ; @:3x+2y (ii)@:x o, @:_ 2
OoX 8y OX X3y2 ' ay X2y3
2 2
6_Xl2,|:2;$:2 @:__YG 6_2LI:6_X
0 X Ty
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©)

(4)

D
©®)
9)

)
©®)
9)

)

(iii)@:30053x cos4y ; @:—4sin3xs'n4y
oX oy
&u du
=-9sn3xcos4 —:—16sm3xcos4
6X2 ¥ y2 y

ou_ Yy @_ X
(IV)8x_x2+y2 Ny +y2

du -2y 62 2y
o R+ o (Y
—2t
NS (ii) 4_22(5‘ o (i) — sint
(iv) 2c0st
(i) %—"r":% ; g—"ev—o (||)a—:4u(u 24V o= avUiP + V)
(“i)a_vv: 2u oW _ -2V
Mm@t Y -2
EXERCISE 7.1
I % @ L2anrt(@ @l
& © ety @ log(3P) ® g7
% (10) e 2 (11)1—10(e3“/2—3) (12)5[1—e—”’2]
EXERCISE 7.2
1 4
0 2 0 @ 3 @ 3
2 3
2 6) 0 (M 0 ® 3
1

T
132 (1073
EXERCISE 7.3

N 3, 3
) —2SIN°XCO0SX—gSiNXCOSX +gX

1 . 4 . .
(i) gcos4xsmx+Ecoszxsmx+l—855mx
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@ 0 B (ge @053 M)iE ©GOFe2+5 M6
EXERCISE 7.4
@ @) 4 (i) 4 () (i) 57 (ii) 16 (3)4
2
@ 2 (5)8(4-2) 6=
@) %E[\/hgsm*l%} 89 (9) 4
3
(10) na2 (11) 112“ (12) 5
2
(13)%: (14)% (15)%nr2h (16) 7
EXERCISE 7.5
2
) 2ra (2 4a (3)8“7""(2\/2— 1)
EXERCISE 8.1
order degree order degree
(VI ()] 1 1 (vi) 2 3
(ii) 1 1 (vii) 2 1
(iii) 2 1 (viii) 2 2
(iv) 2 2 (ix) 1 3
v) 3 3 () 1 1
@ () y=2y (i) Xy —2xy +2y-2c=0
(i) xy+y=0 v) x[)?+yy]-yy =0
(v) y'+3y-10y=0 (vi) y'=6y -9y
(vii) y"' =6y — 13y (viii) y = eV X
(ix) y'—4y +13y=0
. 2 .. 2
(3 )y =)x+a i)y =m (i)y =0 @y o) +1] =1
| EXERCISE 8.2
1) y+sn22y+cos77x+co§3x:0 (2)Iogy+eta”X=c
(5
(3) x=cye\ ¥ (4) € - 2x+2) +logy =
© st (5 Fen (25T =0 @uniey-soiey=xec
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()
)
(4)

)
©)
©®)
()

)

®)
©®)
()

®)
9)
(11)
(12)
(13)

(14

)
(4)

y—tan T (x+y)=c 8)eY=x+1
EXERCISE 8.3

(y—2%) = oy @) Y =cle™ (3) y= ce)<2 /2y

2y = X(X +Y) B X (+a)%=c  (6) y=xlogx
EXERCISE 8.4

y-x+1)=c ) yoé+1)2-x=c

Xetan_ly = etan_ly (tan_ly -1)+c (4) y(1+ X2) =sinx+c

2

2xy + cosx“ = ¢

2
6) y=1+ce X7?

2
x¢/ =tany + ¢ (8)x=y-—a’+ce V2
EXERCISE 8.5

e2x e—3x
y=Ae ¥+ Be ¥+ 55 (2)y=e”[Acos3x+Bsin3x + g5

2 —2X

_ X~ 4 e 5

y=(Ax+ B)e 7X+7e7X+E (4)y=Ae12X+BeX+ﬂ—ﬁxex

y=2[cosXx—sinx]

1M 5, 3

_ 13
y=Ae+ Be 4X—Z[x2+ 5 +§J

y=Ae>+ Be‘x+%) [4 cos 2x — 7 sin 2X]

y=(A+Bx)+

sin 3x (10) y = (A + Bx) € +()—$+

y=Ae+ Be‘X—%c032x+%sin2x

y=[C cos/5x+ D sin/5x] +%+%0052x

(6) y=€e[2 -3¢+ €%

y=e*[Ccos\2x+Dsin\2X —%[4c052x+sin 2X]

y=Ae *+Be"

A=0.9025 A,
197600

3
x/3_'_§xe x/3

EXERCISE 8.6
(2) 17 years (app.)
(5) 136 days
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EXERCISE 9.1

Statements : (1), (2), (3), (5), (6), (10) ; others are not statements.
ay T 12T 13T (149 F a5 T
(16) F anek (18T (A9 F (200 F
(21) (i) Anand reads newspaper and plays cricket

Anand reads newspaper or plays cricket.

(i) I liketeaand ice-cream
| like tea or ice-cream

(22) (i) pv g Kamalais going to school or there are twenty students in the
class.

(i) pAq:Kamaaisgoing to school and there are twenty studentsin the
class.

(iii) Kamalais not going to school.
(iv) It isfalsethat there are twenty students in the class.
(v) Kamala is not going to school or there are twenty students in the
class.
(23) () paq (i)pvg (ii)~p (ivipag V)~p
(24) Sitalikes neither reading nor playing.
(25) (i) /Sisnotanirrational number.
(ii) Mani is not sincere or not hardworking.
(iii) This picture is nither good nor beautiful.

EXERCISE 9.2
(1) Truthtablefor pv (~ Q)
p q ~q pv(~a
T T F T
T F T T
F T F F
F F T T
(2) Truth tablefor (~p) A (~ Q)
p q ~p ~q P~ (~9
T T F F F
T F F T F
F T T F F
F F T T T
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(3) Truthtablefor~(pv g

p q pvq | ~(pvQ)
T T T F
T F T F
F T T F
F F F T
(4) Truth tablefor (pv Q) v (~ p)
P q pvq ~p | (pva)v(~p)
T T T F T
T F T F T
F T T T T
F F F T T
(5) Truthtablefor (p A Q) v (~ Q)
p q prq ~q (P~ Av(~ )
T T T F T
T F F T T
F T F F F
F F F T T
(6) Truth tablefor ~ (p v (~ Q)
p q ~q |[pv(~0) | ~(pv(~Q)
T T F T F
T F T T F
F T F F T
F F T T F
(7) Truth tablefor (pA Q) v (~(pA Q)
p q Prq | ~(pag) | (pAgv(~(pAQ))
T T T F T
T F F T T
F T F T T
F F F T T
(8) Truth tablefor (pA Q) A (~Q)
p q PAq ~q | (pra) A (~0)
T T T F F
T F F T F
F T F F F
F F F T F
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(9) Truth tablefor (pv q) v r

p q r pvg (pva)vr
T T T T T
T T F T T
T F T T T
T F F T T
F T T T T
F T F T T
F F T F T
F F F F F
(10) Truth tablefor (pA Q) v r
P q r pAq (pAg)vr
T T T T T
T T F T T
T F T F T
T F F F F
F T T F T
F T F F F
F F T F T
F F F F F
EXERCISE 9.3
D ) (~p)rQ)Ap contradiction

(i) (pva)v(~(pva) Tautology

(i) (pA(~@) v((~p)va)  Tautology

(iv) gv(pv(~a) Tautology

V) (PACEP)A(~a) AP) Contradiction
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EXERCISE 9.4
(1) Non-commutative but associative (2) Yes, ldentity elementis1
(10) O([1]) =1, 0([2]) =4, 0O([3]) =4, 0([4])=2

EXERCISE 10.1

1) X 0 1 2

p(x=x | 125 | 75 | 15 | 1
216 216 216 216

2 X 0 1 2

p(x=x | 188 | 32 | 1
221 221 221

@) X 0 1 2

p(x=x| 12 | 9 [ 1
22 22 22

@ Oa (): (D 6 ()20 ()1
@ ()ap (i)e P

©) f(x)={(2)X g;’,‘vﬁ;e () 0.3125 (i) 0.25 (iii) 0.4375

(9) c=a (20 (i)i (ii)%1r (iii)%
EXERCISE 10.2
() Mean=1, Variance=% (2) E(X) =35
(3 E(XX)=-15 4 Mean:% , Variance:%

(5) EX)=-1.25
(6) Mean=6.4, Variance=16.24
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()

D
)
©)
4)

D)
©)

©®)

D

)
©)
®)

(6)

(i) Mean = 0, Variance = 48
. 1 _ 1
(||)Mean—a, Varlance—az
(iii) Mean = 2, Variance=2
EXERCISE 10.3

Not possible as probability of an event can lie between 0 and 1 only.
Mean =40; Variance:8—30

Mean = 450, standard deviation = 3\/5

(Vg (s (D5 922 30
EXERCISE 10.4

() 0.4331 (ii) 0.5368 (2) (i) 0.1952 (ii) 0.5669

48

()45 15 (i) 0.2706 (4) (i) 0.0838 (ii) 0.9598

(i) approximately 50 drivers (ii) approximately 353 drivers
EXERCISE 10.5

(i) 0.9772 (i) 0.5 (iii) 0.9104

(iv) 0.8413 (v) 0.2417

(i) 0.67 (i) - 0.52 and 0.52 (iii) - 1.04

0.0749 (4) 4886 pairs

(i) 291 persons (app.) (i) 6 persons (app.)

7219inches  (7) 640students (8 c=S— =3, o?=3
Y
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KEY TO OBJECTIVE TYPE QUESTIONS
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